**Title:** Mechanisms for retention of inorganic N in acid forest soils in southern China Jin-bo Zhang<sup>1,2</sup>, Zu-cong Cai<sup>1,2\*</sup>, Tong-bin Zhu<sup>1,2</sup>, Wen-yan Yang<sup>1</sup>, Christoph Müller<sup>3</sup> <sup>1</sup>School of Geography Sciences, Nanjing Normal University, Nanjing 210023, China <sup>2</sup>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences

<sup>3</sup> Department of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring
26, 35392 Giessen, Germany

\*E-mail: zccai@njnu.edu.cn (Cai);

## Separation of NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup>

For isotopic analysis,  $NH_4^+$  and  $NO_3^-$  were separated by distillation with magnesium oxide and Devarda's alloy<sup>1,2</sup>. In detail, a portion of the extract was steam-distilled with MgO in a steam distillation system to isolate the  $NH_4^+$ . The sample in the flask was then distilled again after the addition of Devarda's alloy to isolate the  $NO_3^-$ . The liberated  $NH_3$  was trapped using a boric acid solution. The trapped N was acidified and converted to  $(NH_4)_2SO_4$  using a 0.02 mol  $L^{-1}H_2SO_4$  solution. The  $H_2SO_4$  solution containing  $NH_4^+$  was then evaporated to dryness at 65°C in an oven and analysed for <sup>15</sup>N abundance. Before separating  $NH_4^+$  and  $NO_3^-$  in the extract using a steam distillation system, the recovery of  $NH_4^+$  and  $NO_3^-$  from a standard solution (1 g  $NH_4^+$ -N  $L^{-1}$  and 1 g  $NO_3^-$ -N  $L^{-1}$ ) was determined. The results showed that almost all of the  $NH_4^+$ -N in the solution could be recovered (>99%), and the recovery of  $NO_3^$ was >95%.

## Comparison of dilution and <sup>15</sup>N tracing model methods

To verify the utility of the <sup>15</sup>N tracing model for simulating the gross rates of N transformation that occur simultaneously, we compared the results obtained using the <sup>15</sup>N dilution method<sup>3</sup> with those obtained using the <sup>15</sup>N tracing method employed in this study.

The gross rates of mineralization, nitrate production, and  $NO_3^-$  consumption per time interval and the average of all time intervals were calculated using the method of Kirkam and Bathalomew (1954)<sup>3</sup>. The results showed the calculated (dilution technique) and modelled (<sup>15</sup>N tracing technique) mineralization and  $NO_3^-$  production

rates were similar (p < 0.01; Fig. 2A, B). Based on the generally strong agreement between the values, we were confident enough to use the modelled rates, which provided details on the N transformation mechanisms and therefore a much more detailed view of actual N dynamics. Therefore, the modelled rates were used to compare soil N transformations between temperate and subtropical-tropical forest soils in the present investigation.

Samples 14 and 15 were from the same core, but the <sup>15</sup>N tracing experiment was carried out in the laboratory for soil 14 (added 50  $\mu$ g N g<sup>-1</sup> soil) and in the field for soil 15 (added 2  $\mu$ g N g<sup>-1</sup> soil). The results showed that the N transformation rates determined in the laboratory and in the field were comparable (Table 2 in article), and thus the N transformations were not stimulated in the laboratory due to higher N application in the studied acid forest soils. The laboratory studies can provide essential information to mechanistically understand the observed N cycling process in the field<sup>4,5</sup>, despite some reported problems<sup>6</sup>. Nitrogen enrichment in humid subtropical soils could therefore be explained using data obtained by comparing the gross rates of N transformation in laboratory-incubated soils with those of temperate soils (Fig. 3 in article).

Previous studies, where the <sup>15</sup>N tracing approach (section 2.4 in article) was used, showed that N consumption/production rates can be separated into process-specific gross rates to provide more details about soil N transformations, despite the fact that there is still some uncertainty about the general nature of the application of the <sup>15</sup>N tracing model<sup>5,7,8,9,10,11</sup>. It should be stressed that, in general, individual gross N

transformation rates cannot be directly measured but can only be quantified with the help of analytic models, the most basic of which was presented by Kirkham and Bartholomew (1954)<sup>7</sup>. Subsequently, more complete and realistic analytic models have been developed. The latest are numerical <sup>15</sup>N tracing models in which the N transformation rate parameters are identified by non-linear optimization techniques<sup>7,10</sup>. We decided to calculate the total  $NH_4^+$  and  $NO_3^-$  production and consumption rates via the dilution method (Kirkam and Bathalomew 1954)<sup>7</sup> and the current <sup>15</sup>N tracing model. Comparison of the model results showed that the two methods provided comparable results for mineralization and  $NO_3^-$  production rates (p < 0.01; Fig. 1A, B). The advantage of the <sup>15</sup>N tracing approach is that not only pool-specific gross N rates, but also individual N rates, can be determined. Furthermore, <sup>15</sup>N tracing models overcome the restrictions of zero-order kinetic rates that are assumed in the dilution approach. First-order and Michaelis-Menten kinetics are more realistic because they take into account a non-linear behaviour with respect to changing N concentrations. Discrepancies between the two methods may be associated with the use of different kinetics<sup>11</sup> (see also the result for  $NO_3^-$  immobilization for the two neutral temperate forest soils [soil 7, 8], Fig. 1C).

The results of analysis using average of soil properties and gross N transformation rates at each site

|                                | Levene's T                           | est for Equ | uality of | t-test for Equality of Means |                    |       |                               |                      |  |
|--------------------------------|--------------------------------------|-------------|-----------|------------------------------|--------------------|-------|-------------------------------|----------------------|--|
| Transfor<br>mation<br>process* | Variances                            |             |           |                              |                    |       | 95%<br>Interval<br>Difference | Confidence<br>of the |  |
|                                |                                      | F           | Sig.      | t                            | Degrees of freedom | Sig.  | Lower                         | Upper                |  |
| М                              | Equal<br>variances<br>assumed        | 1.346       | 0.284     | -4.682                       | 7                  | 0.002 | -2.49                         | -0.82                |  |
|                                | Equal<br>variances<br>not<br>assumed |             |           | -4.345                       | 4.256              | 0.011 | -2.68                         | -0.62                |  |
| TNi                            | Equal<br>variances<br>assumed        | 3.552       | 0.101     | 0.666                        | 7                  | 0.527 | -1.16                         | 2.07                 |  |
|                                | Equal<br>variances<br>not<br>assumed |             |           | 0.749                        | 4.342              | 0.492 | -1.18                         | 2.09                 |  |
| O <sub>NH4</sub>               | Equal<br>variances<br>assumed        | 3.332       | 0.111     | 0.999                        | 7                  | 0.351 | -0.97                         | 2.38                 |  |
|                                | Equal<br>variances<br>not<br>assumed |             |           | 1.127                        | 4.224              | 0.32  | -1.00                         | 2.41                 |  |
| I <sub>NO3</sub>               | Equal<br>variances<br>assumed        | 0.64        | 0.45      | -5.818                       | 7                  | 0.001 | -0.80                         | -0.34                |  |
|                                | Equal<br>variances<br>not<br>assumed |             |           | -5.735                       | 6.17               | 0.001 | -0.81                         | -0.33                |  |
| NC                             | Equal<br>variances<br>assumed        | 4.32        | 0.076     | 1.145                        | 7                  | 0.29  | -0.57                         | 1.63                 |  |
|                                | Equal<br>variances<br>not<br>assumed |             |           | 1.297                        | 4.038              | 0.264 | -0.60                         | 1.67                 |  |

| NR                | Equal<br>variances<br>assumed | 0.022 | 0.886 | -5.002 | 7     | 0.002 | -1.38  | -0.49   |
|-------------------|-------------------------------|-------|-------|--------|-------|-------|--------|---------|
|                   | Equal<br>variances<br>not     |       |       | -4.923 | 6.118 | 0.003 | -1.40  | -0.47   |
|                   | assumed                       |       |       |        |       |       |        |         |
| Turnover          | Equal                         | 14.97 | 0.006 | 2.735  | 7     | 0.029 | 212.06 | 2921.27 |
| time of organic N | variances<br>assumed          |       |       |        |       |       |        |         |
|                   | Equal<br>variances            |       |       | 3.075  | 4.347 | 0.033 | 195.47 | 2937.87 |
|                   | not                           |       |       |        |       |       |        |         |
|                   | assumed                       |       |       |        |       |       |        |         |
| DNRA              | Equal                         | 1.195 | 0.31  | -0.276 | 7     | 0.791 | -0.10  | 0.08    |
|                   | variances                     |       |       |        |       |       |        |         |
|                   | assumed                       |       |       |        |       |       |        |         |
|                   | Equal                         |       |       | -0.256 | 4.287 | 0.81  | -0.12  | 0.10    |
|                   | variances                     |       |       |        |       |       |        |         |
|                   | not                           |       |       |        |       |       |        |         |
|                   | assumed                       |       |       |        |       |       |        |         |

\* M, mineralization rate of organic N pool; TNi, total nitrification rate (autotrophic nitrification + heterotrophic nitrification);  $O_{NH4}$ , autotrophic nitrification;  $I_{NO3}$ , immobilization of NO<sub>3</sub><sup>-</sup>; NC, nitrification capacity; NR, NO<sub>3</sub><sup>-</sup> retention capacity; DNRA, dissimilatory NO<sub>3</sub><sup>-</sup> reduction to NH<sub>4</sub><sup>+</sup>.

Table 2 Pearson correlation coefficient between soil pH and autotrophic nitrification

 $(O_{NH4})$  nitrification capacity (NC) by using site-averages

| Factor | -                   | O <sub>NH4</sub> | NC      |
|--------|---------------------|------------------|---------|
| рН     | Pearson Correlation | 0.934**          | 0.950** |
|        | Sig. (2-tailed)     | 0.000            | 0.000   |
|        | N                   | 9                | 9       |

\*\*. Correlation is significant at the 0.01 level (2-tailed).

| Factor               | -                      | $NH_4^+$ immobilization rates |  |
|----------------------|------------------------|-------------------------------|--|
| Gross mineralization | Pearson<br>Correlation | 0.799**                       |  |
|                      | Sig. (2-tailed)        | 0.010                         |  |
|                      | Ν                      | 9                             |  |

Table 3 Pearson correlation coefficient between gross rates of mineralization and

\*\*. Correlation is significant at the 0.01 level (2-tailed).

## References

- Feast, N.A. & Dennis, P.E. (1996). A comparison of methods for nitrogen isotope analysis of groundwater. *Chem. Geol.*, 129, 167-171.
- Zhang, J.B., Zhu, T.B., Cai, Z.C. & Müller, C. (2011). Nitrogen cycling in forest soils across climate gradients in Eastern China. *Plant Soil*, 342, 419 – 432.
- 3. Kirkham, D. & Bartholomew, W.V. (1954). Equations for following nutrient transformations in soil, utilizing tracer data. *Soil Sci. Soc. Am. Pro.*, 18, 33–34.
- Huygens, D., Boeckx, P., Templer, P., Paulino, L., Cleemput, O.V., Oyarzún, C., Müller, C. & Godoy, R. (2008). Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. *Nat. Geosci.*, 1, 543-548.
- Huygens, D., Rütting, T., Boeckx, P., Van Cleemput, O., Godoy, R. & Müller, C. (2007). Soil nitrogen conservation mechanisms in a pristine south Chilean *Nothofagus* forest ecosystem. *Soil Biol. Biochem.*, 39, 2448–2458.
- Arnold, J., Corre, M.D., Veldkamp, E. (2008). Cold storage and laboratory incubation of intact soil cores do not reflect in-situ nitrogen cycling rates of tropical forest soils. *Soil Biol. Biochem.*, 40, 2480–2483.

- Mary, B., Recous, S., Robin, D. (1998). A model for calculating nitrogen fluxes in soil using 15N tracing. *Soil Biol. Biochem.*, 30, 1963–1979.
- Paterson, E. (2003). Importance of rhizodeposition in the coupling of plant and microbial productivity. *Eur. J. Soil Sci.*, 54,741–750.
- Luxhøi, J., Jensen, L.S. (2005). Gross N mineralization–immobilization rates in heterogeneous intact soil cores can be estimated without marked error. *Biol. Fertil. Soils*, 41, 280–283.
- Müller, C., Rütting, T., Kattge, J., Laughlin, R.J. & Stevens, R.J. (2007). Estimation of parameters in complex <sup>15</sup>N tracing models via Monte Carlo sampling. *Soil Biol. Biochem.*, 39, 715–726.
- Rütting, T. & Müller, C. (2007). <sup>15</sup>N tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soils. *Soil Biol. Biochem.*, 39, 2351–2361



Fig. 1 Comparison of modelled and calculated total mineralization (A), nitrification

(B) and NO<sub>3</sub><sup>-</sup> immobilization rates (C; mg N kg<sup>-1</sup> d<sup>-1</sup>)

The modelled rates were simulated using the <sup>15</sup>N tracing model (Müller et al., 2007)<sup>10</sup>, and the calculated rates were obtained using the method of Kirkam and Bathalomew  $(1954)^7$ .