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Text S1

Model discretization and sampling

To apply the set-based approach, it is necessary to transform the continuous-time ordinary differential
equation system (1) into an equivalent system of difference equations. This is done by applying a
discretization scheme and considering an appropriate sampling of the time window, i.e. {0, t1, . . . , tN}.
In the present case, we consider a first order approximation method known as the Euler forward method.
The scheme derives from the truncation of the Tailor series considering only the first order derivative,
i.e. the linear approximation (extrapolating the tangent at t0) with

x(t0 + h) ≈ x(t0) + hẋ(t0), (1)

where h denoted the step size, and we have

ẋ(t0) ≈ x(t0 + h)− x(t0)

h
. (2)

Denoting ẋ(t0) = f(x(t), p, w(t)), assuming u(t) being constant within the time interval t ∈ [t0, t0 + h]
(zero-order-hold), and denoting xk−1 = x(t0), uk−1 = u(t0), xk = x(t0 + h), we finally obtain the
difference equation system

fki (xk, xk−1, p, wk−1) = 0, i ∈ [1:nx] (3)

Here, xk, , wk denote respectively the system states and inputs at the time index k, and p ∈ Rnp the
constant parameters. We furthermore choose the sampling sufficiently small to avoid discretization errors,
i.e. tk+1 − tk = 2.5h. For a comprehensive overview of higher order discretization schemes and related
numerical stability issues, see e.g. [1, 2].

For simplicity of notation, we denote the collection of all variables, induced by the sampling, by

z
.
= (p1, . . . , pnp , x0, . . . , xN , w0, . . . , wN−1),

with z ∈ Rnz , nz = np +N(2 + nx + nw). The model equations can then be summarized by

fki (z) = 0, k ∈ [1:N ], i ∈ [1:nx], (4)

with appropriate choice of z-components.

Data and uncertainty description

The a priori knowledge is modeled by polytopic sets bounding the possible variable’s values. The a priori
bounding sets of the parameters p, states x, and inputs w, with 0 6 t 6 tN are respectively given by:

Dprior :

 p ∈ P0
.
= {p ∈ Rnp : App 6 ap},

x ∈ X0
.
= {x(t) ∈ Rnx : Axxk 6 ax, k ∈ [0 : N ]}

w ∈W0
.
= {w(t) ∈ Rnw : Awwk 6 aw k ∈ [0 : N − 1]},

(5)

with known the matrix-vector pairs (Ap, ap), (Ax, ax), (Aw, aw) of appropriate dimensions. The a priori
data Dprior can then be expressed as a polytopic set

Zprior
.
= {z ∈ Rnz : Apriorz 6 aprior}, (6)

where Aprior, aprior constructed from Ap, Ax, Aw and ap, ax, aw respectively.
Similarly, a measurement and its uncertainty are described by

Dmeas :
{
x(tj) ∈ X(tj)

.
= {x ∈ Rnx : Ax(tj)xj 6 ax(tj)} j ∈ [0 : N ], (7)
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with know matrix-vector pair (Ax(tj), ax(tj)), for all j ∈ [0 : N ]. The respective polytope

Zmeas
.
= {z ∈ Rnz : Ameasz 6 ameas}, (8)

is constructed analogously.
Finally, the structural data, which expresses dependencies of variables,

Dstr :
{
qi(xk, xk−1, p, wk) 6 0 i ∈ [1 : nq] k ∈ [0 : N ]. (9)

is expressed similarly as before by

Zstr
.
= {z ∈ Rnz : Astrz 6 astr}. (10)

With these preparations, we can now summarize the available data as the Cartesian product

Z = Zprior × Zmeas × Zstr = {z ∈ Rnz : Azz 6 az}, (11)

where the matrix-vector pair (Az, az) is constructed from Aprior, Ameas, Astr and aprior, ameas, astr re-
spectively. Note that (Az, az) may contains redundant constraints, which can be detected and removed
following e.g. [3].

Set of consistent solutions and optimization

All solutions of the dynamical model M (3), which are consistent with the data D, belong to the set
Z ⊂ Rnz with:

Z .
=

{
z ∈ Z :

fki (z) = 0 k ∈ [1:N ], i ∈ [1:nx]
Azz 6 az

}
(12)

where fk(z) are the systems equations of (1) with an appropriate choice of z-components. We denote
the respective constraint satisfaction problem (12) by M ∩D.

The set of consistent parameters can be seen as an np-dimensional axis-parallel subspace of Rnz ,
formalized by the projection map fp : Rnz → Rnp , i.e. P = fp(Z). Analogously, the set of consistent
states (at tk) is given by the projection map fxk : Rnz → Rnx , i.e. X (tk) = fxk(Z).

The parameter optimization problem consists in determining the (global) optimum c(z∗), i.e. to solve
the polynomial optimization problem (POP)

POP (Z) :

{
min
z∈Rnz

c(z) s.t.

z ∈ Z.
(13)

SDP Relaxation

To this end, the following relaxation procedure is considered. First, we lift POP (Z) to an equivalent
quadratic problem by quadrification. Let Sn be the set of real symmetric n× n matrices, and

〈A,B〉 =
∑
i,j

aijbij

denote the usual Frobenius product. Quadrification (see [4]) consists in deriving a monomial vector ξ for
which

c(z) = 〈C, ξξT 〉, fki (z) = 〈F ki , ξξT 〉,
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for appropriate matrices C, F ki ∈ Snξ . Each monomial (of ξ) of degree two or more is the product of
two other monomials of lower degree. As a technical requirement, we ask, without loss of generality, that
ξ1 = 1. The next nz components of the vector ξ are all the components of z, i.e.,

(ξ2, . . . , ξnz+1) = z.

Note we have ξξT e1 = ξ, with e1 = (1, 0, . . . , 0)T ∈ Rnξ .
The polytopic constraint set Z bound, by construction, the z-equivalent components of ξ. The

remaining components, which are monomials of degree two or higher, can be bounded directly from
the data Z, particularly considering interval arithmetic. The resulting bounding constraints for all the
components of ξ are expressed by

Aξξξ
T e1 = Aξξ 6 aξ.

Finally, by replacing the product matrix ξξT with a symmetric variable matrix Ξ ∈ Snξ , and consid-
ering Ξ � 0, we obtain the convex semidefinite program:

SDP (Z) :



min
Ξ∈Snξ

〈C,Ξ〉 s.t.

〈F ki ,Ξ〉 = 0 k ∈ [1:N ], i ∈ [1:nx]
AξΞe1 6 aξ
Ξ11 = 1
Ξ � 0.

Dual certificate

Any feasible solution for the dual problem of a SDP provides by weak duality a lower bound to the SDP
optimum [5]. Therefore, dual unboundedness provides a certificate of primal infeasibility. Moreover,
if strong duality applies then the optimum of the dual and of the primal coincide, which provides a
certificate of optimality.

Several SDP duals have been proposed (see [6] for a discussion of SDP duals). For simplicity, we
consider the Lagrangean dual (denoted by SDP ∗(Z)), which is itself an semidefinite program and for
which strong duality holds under constraint qualification conditions (see e.g. [7]).

We denote by Ξ∗ the optimal solution of the dual program SDP ∗(Z); by weak duality, we have that
Ξ∗ is a lower bound on the objective value for the SDP (Z). With z∗ = fz(Ξ

∗), fz : Snξ → Rnz , we have
the desired lower bound on the objective value for POP (Z), i.e.

c(z∗) 6 c(z), ∀ z ∈ Z.

Furthermore, if c(Ξ∗) → ∞, i.e. unbounded, we have by weak duality that SDP (Z) is infeasible, and
hence POP (Z) infeasible.

Outer-bounding

By choosing as objective a variable of interest, e.g. c(z) = pi, Ci accordingly, the respective solution of
the dual SDP ∗,

〈Ci,Ξ∗〉
.
= p

i

provides a lower bound on pi. Analogously, by choosing c(z) = −pi, Ci accordingly, the respective
solution gives

−〈Ci,Ξ∗〉
.
= pi,

i.e. an upper bound of the respective variable pi. The lower and upper bounds define the (a posteriori)
uncertainty interval [p

i
, pi].
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Partitioning

To analyze the solution sets in more detail, we consider a partitioning approach. We partition the initial
bounding set into subsets, which are subsequently analyzed for infeasibility. Infeasible partitions can be
discarded, and from the remaining partitions the outer-estimate is constructed. Formally, we consider a
selection s of variables of interest, e.g. the parameters p. We denote the a priori feasible set by S, e.g.
P0.

We then partition S into a number of subsets, i.e. Qj ⊆ S, j ∈ [1:Q]. This is achieved e.g. by some
recursive scheme (e.g. binary branching) up to some desired volumetric resolution ε, e.g. the recursive
bisection algorithm:

Algorithm 1 (Bisectioning(Q, ε))

1. If SDP ∗(Z ∩Q) is unbounded then exit and return ∅

2. If ||Q|| 6 ε then exit and return Q

3. Partition Q into Q1 and Q2

4. Set Q′1
.
= Bisectioning(Q1)

5. Set Q′2
.
= Bisectioning(Q2)

6. Return Q′1 ∪Q′2

The estimate is then the union of partitions Qj for which 〈C,Ξ∗〉 .
= cj of SDP ∗(Z ∩Qj) is bounded,

i.e.
I(S) =

⋃
cj<∞,
16j6Q

Qj .

Branch-and-bound optimization

For global optimization, we consider the objective function c(z) given by the sum of least squares (10). To
obtain the optimal parameter values, a branch-and-bound scheme is considered. To this end, we consider
a partitioning Qj , i ∈ [1 : q] of the initial parameter region P0. For each partition, we evaluate the value
of the sum of least squares, i.e. by solving SDP ∗(Z ∩ Qj), and assign to each feasible partition Qj the
lower bound. Partitions with lowest least squares are further analyzed and validated considering Monte
Carlo tests. In the present case, we consider 64 partition for each parameter.

References

1. Davis P, Rabinowitz P (1975) Methods of numerical integration. Academic Press New York.

2. Ralston A, Rabinowitz P (2001) A first course in numerical analysis. Courier Dover Publications.

3. Mattheiss T (1973) An algorithm for determining irrelevant constraints and all vertices in systems
of linear inequalities. Oper Res 21: 247–260.

4. Sherali H, Tuncbilek C (1997) Comparison of two Reformulation-Linearization Technique based
linear programming relaxations for polynomial programming problems. J of Glob Opt 10: 381–390.

5. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, UK.



5
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