
Text S3

Parameter Sensitivity Analysis (PSA)

In this section, we evaluate classical parameter sensitivity coefficients and compare the results with the
proposed sensitivity measure. To this end, we first consider a local parameter sensitivity analysis, and
second a global parameter sensitivity approach using Latin hypercube sampling.

For simplicity, we collect the kinetic parameters as listed in Table 2 by the vector p ∈ Rnp , and the
model states by the vector x ∈ R6. The local parameter sensitivity coefficients are derived by the forward
method (see e.g. [1]), i.e. by solving the sensitivity differential equation:
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Here, f(x, p) denotes the right hand side of the system given in Equations (16) (exponential growth phase,
0 ≤ t ≤ 80 h) and Equations (17) (complete time course, 0 ≤ t ≤ 160 h) with

µ = µmax
Glc(t)

Glc(t) +KGlc
.

We denote the normalized parameter sensitivities by

Sij(t) =
∂xi(t)

∂pj
· pj
xi(t)

, (1)

and the sensitivities are ranked using the absolute infinite norm as sensitivity metric given by

|Sij |∞ = max
t
|Sij(t)|. (2)

The sensitivity coefficients are scaled finally by the maximum sensitivity coefficient

|Sij |loc∞ = |Sij |∞/ max
1≤i≤nx
1≤j≤np

|Sij |∞. (3)

Because the local parameter sensitivity coefficients are valid only for small perturbations of the nominal
parameters, we furthermore employ a global sensitivity analysis considering a Latin hypercube sampling
of initial parameter values, see e.g. [2]. To this end, we consider as parameter intervals, from which the
parameter values are sampled, the obtained confidence intervals as given in Table 2. The number of
samples is 10000; for each sample we calculate the sensitivity coefficients |Sij |loc∞ (k) according to Eq. 3
and where 1 ≤ k ≤ 10000 . From these samples, we infer the mean:

|Sij |glob∞ =
1

10000

10000∑
k=1

|Sij |loc∞ (k). (4)

Results

The sensitivity analysis results for the exponential growth phase are shown in Fig. S1, for the complete
time course of the measurements in Fig. S2. Regarding the exponential growth phase, µmax is the most
sensitive parameter (both locally and globally), and changes in this parameter affect all the species of the
system. The yield factors Y′X/Amn, Y′X/Glc, Y′X/Gln, and Y′X/Lac are shown sensitive only with respect
to Amn, Glc, Gln, and Lac respectively. KD is particularly sensitive with respect to Xd. Regarding the
complete time course of the measurements, again µmax is by far the most sensitive parameter. Also the
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(a) local sensitivity coefficients |Sij |loc∞ (b) global sensitivity coefficients |Sij |glob∞

Figure S1. Parameter sensitivity analysis results for the exponential growth phase.

(a) local sensitivity coefficients |Sij |loc∞ (b) global sensitivity coefficients |Sij |glob∞

Figure S2. Parameter sensitivity analysis results for the complete time course of the measurements.

Monod constants KGlc and KGln are shown sensitive. Furthermore, the relative influence of changes in
the product yield factors Y′X/Amn and Y′X/Lac is smaller than in the exponential growth phase.

Though qualitatively the results obtained through PSA are consistent with the proposed sensitivity
measure, a comparison of the methods is complicated. Local/global PSA has the advantage that the
influence of infinitesimal small parameter changes with respect to particular species can be evaluated.
However, interpretation of PSA results is in general very difficult, e.g. the results can not be extrapolated
to evaluate the effect of significant variations in the parameters e.g. due to inherent variability. The
proposed sensitivity measure on the contrary directly indicates those parameter variations such that the
model is still acceptable.
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Outlier Analysis

In this section, we cross-validate the identified outliers considering the z-score, Grubbs test for outliers [3]
if applicable and otherwise the trimmed sum of squares (LTS), see [4].

z-score The z-score of an observation is defined for normally distributed errors as

z =
x̃− x
σ

,

where x̃ denotes the observation, x the sample mean, and σ the standard deviation of the errors. In the
present case, we know from assay validation that the measurement errors of the species Amn, Glc, and
Lac are normally distributed (and unbiased). The z-score is thus given by

z =
x̃i(tj)− xi(tj)

σi
, (5)

where x̃i(tj) denotes the observation of species xi at tj and σi the standard deviation according to Table
1. For the species Gln, Xd, and Xv a relative error ri (see Table 1) is considered, therefore we set
σi = rix̃i(tj).

In Eq. 5, xi(tj) denotes the model prediction of xi at tj considering the parameters obtained from a
standard least squares method (using Simbiology toolbox [5]). We distinguish two predictions: First a pre-
diction based on the parameter obtained without removing the suspected outlier (denoted by xi(tj)|prior),
and second based on the parameter obtained after removing the outlier (xi(tj)|post). This leads respec-
tively to two z-scores, zprior and zpost respectively.

Grubbs Test The Grubbs (single) outlier test is as follows: The hypothesis ’no outlier’ is rejected at
significance level α if

z > zcrit =
N − 1√
N

√
(tα/2N,N−1)2

N − 2 + (tα/2N,N−1)2
, (6)

see [3], where tα/2N,N−1 denotes the upper critical value of the t-distribution with N − 2 degrees of
freedom. We consider the standard significance level α = 0.05, and for the bioreactor experiment, we
have for each specie N = 7 observations (thus zcrit = 2.02), and for the shaker experiment N = 14
observations (thus zcrit = 2.51).

The Grubbs test is positive if the ’no outlier’ hypothesis is rejected. The Grubbs test before deletion
of the outlier is denoted by GTprior considering zprior, after deletion GTpost considering zpost.

Least trimmed squares (LTS) The LTS is a modification of the standard least squares method. The
least trimmed squares method minimizes the sum of squared residuals over a subset of observations, for
details refer to [4]. In the present case, we focus on single outlier hypothesis only, i.e. utilizing N − 1
observations. We use LTS to find the N − 1 observations that yield the lowest sum of squared residuals.
Conversely, this means to find the single observation whose removal is optimal in LTS sense and thus an
outlier candidate. For evaluation, we again utilize the Simbiology toolbox [5].

We say the LTS test is positive, if the LTS is minimal for the (suspected) outlier regarding any other
possible single outlier hypothesis.
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Table S1. Outlier validation results: Bioreactor

outlier before deletion after deletion LTS
zprior GTprior zpost GTpost

Xd(43.5 h) 2.5 + 4.0 + +
Lac(137.3 h) 5.6 + 7.6 + +
Amn(137.3 h) 20.2 + 20.3 + +

Table S2. Outlier validation results: Shaker

outlier before deletion after deletion LTS
zprior GTprior zpost GTpost

Gln(0 h) 0.9 - 1.24 - +
Xv(69.2 h) 1.6 - 2.2 - +
Xd(47.0 h) 11.1 + 11.3 + -
Xd(152 h) 1.4 - 1.5 - +
Lac(x∗) ≥3.8 + ≥6.0 +

∗x={34 h, 47 h, 54.8 h, 69.2 h, 81.5 h}.

Results

We apply above tests to consolidate the outlying observation identified using our method. Recall that
we utilized the 1-σ confidence intervals for the measurements as hard constraints, and the outliers have
to be understood in this sense.

The results for the bioreactor are given in Table S1, and for the shaker experiment in Table S2.
All outlier candidates in the bioreactor are validated considering these additional tests. For shaker
experiment, the tests showed that Xd(47.0 h) can be safely considered as an outlier. Although LTS test
is positive for Gln(0 h), Xv(69.2 h), and Xd(152 h), their deviation may also be explained by natural
deviation. Regarding the consecutive outliers in the lactate dynamics, a model mismatch is the most
appropriate explanation, e.g. due to pyruvate consumption which has however not been measured.
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