Table S1: Plasmids^a 1

-		
-	1	
4	,	
e.	-	

Plasmid	Genotype	
pDG268	amyE::lacZ cat amp	(Guérout-Fleury et al., 1996)
pDG1515	tet amp	(Guérout-Fleury et al., 1995)
pDP376	$\Omega\Delta$ remsite34 mls amp	
pDP377	$\Omega\Delta$ remsite56 mls amp	
pKB116	P _{tac} -MBP-remA lacIq amp	
pMAL-c2x	P _{tag} -MBP-lacZ lacIq amp	(New England Biolabs)
pMiniMAD2	ori ^{BsTs} amp mls	(Patrick and Kearns, 2008)
pRLG770	transcription vector	(Ross et al., 1990)
pRLG1507	pSL6 circular permutation vector	(Gosink et al., 1993)
pRLG3422	pRLG770 containing <i>lacUV5(-45/+1)</i>	(Gaal et al., 1997)
pRLG7340	pSL6 containing <i>rrnB</i> P1 (-73/+50)	
pRLG11810	pRLG770 containing P _{eps} (-452/+35)	
pRLG11811	pRLG770 containing P _{eps} Δremsite34	
pRLG11812	pRLG770 containing P _{eps} <i>∆remsite56</i>	
pRLG11825	pRLG770 containing P _{eps} (-452/+35)	
pRLG12757	pRLG770 containing P _{eps} (-107/+35)	
pRLG12759	pRLG770 containing P _{eps} (-159/+35)	
pRLG12760	pRLG770 containing Peps (-176/+35)	
pRLG12764	pRLG770 containing P _{eps} (-121/+35)	
pRLG12766	pSL6 containing P _{eps} (-159/+35)	
pRLG12783	pSL6 containing <i>P_{opuA}</i> (-159/+35)	
pRLG12784	pRLG770 containing Popula (-172/+27)	
pRLG12785	pSL6 containing P _{tapA} (-168/+65)	
pRLG12786	pRLG770 containing P _{tapA} (-168/+65)	

3 4 ^aNumbers in parentheses indicate the boundaries of the promoter construct relative to the transcriptional start site.

Table S2: Primers

		-		
1	ŀ	-		
1	Ļ		,	

Primer	Sequence
1527	AGGAGGAATTCATGACGATTAAACTGATTAATATCGGA
1528	CTCCTGGATCCAACCCTCTTTCTTCATGCGGCAA
1620	GCGCTACGGCGTTTCACTTC
2713	AGGAGGAATTCCTCCGCCATCAGCGCTTT
2714	CTCCTCTCGAGTCCTCTAATTTACTGCACTTC
2715	CTCCTCTCGAGCTTATTATATTTAAAATTTTATAAAGAAC
2716	AGGAGCTCGAGTGTTCTCTAAAGAGAACTTATTG
2717	AGGAGCTCGAGGAGGAAAATCATGATTTTGTTC
2718	CTCCTGGATCCGATCGTGATCCTGAACGGCA
3250	ACGACTCACTATAGGGCGAATTG
3251	CTCACTAAGGGAACAAAAGCTGG
3318	TCCTGCCTAAACGCCGTCGT
3319	CAATTCGCCCTATAGTGAGTCGTCTGCCTTCTTTGTTTGT
3320	CCAGCTTTTGTTCCCTTTAGTGAGTGATATTGGCACCAGTATGAC
3321	GCATATGTATATCACAACTCGC
4633	AGGAGGAATTCAATGTTGCGCGGTCAGAAAATTA
4831	AGGAGGAATTCTGTACGGCTTGCACTAAATGT
5619	CTCCTAAGCTTCCCGCGGCTGGCTTCCCGC
5620	GCAGCGAATTCGGGAAGTGCAGTAAATTAGAGGAA
5892	GGCTTATTTTGCAATTTGTAAATAATAACGTTTTC
6097	GCGGCGGATCCCCGCGGCTGGCTTCCCGC
6157	AGGAGGAATTCCCTCTATTCCTGTCGTTATTTC
6158	AGGAGGAATTCATTTCGTTCATTATAAGGAATTTTTCGT
6159	AGGAGGAATTCATTTAAAATAATAAGGGAAGTGCAGTAA
6463	AGGAGGAATTCGGATATGCATTTAAATTCTCACATAAC
6464	TCCTCAAGCTTCATATCTTACCTCCTGTAAAACACTG
6465	AGGAGGAATTCCTAAAGGTAGGAGAAAAATCACCCGT
6466	TCCTCAAGCTTCATATTTCCCTCCATATTAAGCAAT

8

9 Table S3: β-galactosidase data

Genotype	amyE::P _{eps} -lacZ	amyE::P _{eps} ^{improved} -lacZ
Wild type	12 ± 4 (DS1882)	25 ± 6 (DS9468)
sinR	480 ± 38 (DS2609)	1751 ± 320 (DS9467)
remA	1 ± 0 (DS2913)	14 ± 1 (DS9469)
remA sinR	1 ± 0 (DS2911)	7 ± 1 (DS9466)
sinl	1 ± 0 (DK444)	16 ± 2 (DK445)

¹All cultures were grown to 1.5 OD₆₀₀ in LB medium. All values are the average of three

11 replicas (Miller units ± standard deviation). This table contains the raw data for Figure

12 1. Strains used to generate the data are indicated in parentheses.

13

14

15 Supplemental Figure Legends

16

Figure S1. RemA binds in an array upstream of target promoters. A) The sequences of the P_{eps} , P_{tapA} , and P_{opuA} promoters (Kearns et al., 2005; Chu et al., 2006; Hoffman et al., 2013). The -35 and -10 promoter elements and the +1 transcriptional start sites are underlined. RemA binding sites (BS) are indicated in red. B) A consensus binding site was predicted suing Weblogo assuming that each of the RemA binding sites is part of a series of direct repeats (Crooks et al., 2004).

23

Figure S2. RemA is highly conserved and is typically found upstream of the gene 24 25 that encodes Gmk. A) Multiple sequence alignment and boxshade analysis of RemA 26 sequences from the following bacteria: Bsu, Bacillus subtilis; Ban, Bacillus anthracis, Oih, Oceanobacillus iheyensis, Cbo, Clostridium botulinum, Tet, Thermoanaerobacter 27 Thermotoga ethanolicus, Tma, maritima, Pmo, Petrotoga mobilis, Tye, 28 Thermodesulfovibrio vellowstonii, Dvu, Desulfovibrio vulgaris, Det, Dehalococcoides 29 ethenogenes, Npu, Nostoc punciforme, Ssp, Synechococcus sp. Carets indicate the 30 sites of loss-of-function missense mutations sor4 (R18W) and sor31 (P29S) reported in 31 Winkelman et al., 2009. B) Neighborhood analysis of genes surrounding remA in 32 various genomes that correspond to the predicted RemA products aligned in Fig S2A. 33 Neighborhood analysis was conducted using www.microbesonline.org. Named genes 34 are color coded to indicate conservation in the various genomes. Gray genes are 35 genes that are not highly conserved with other genomes in this neighborhood. Gene 36 37 lengths and distances are not to scale.

38

4

Figure S1

Figure S2

