Supporting Information

Quantitative Paper Spray Mass Spectrometry Analysis of Drugs of Abuse

Yuan Su^{*a*}, He Wang^{*a*}, Jiangjiang Liu^{*a*}, Pu Wei^{*b*}, R. Graham, Cooks^{*b,c*}, Ouyang Zheng^{*a,c*}

 ^aWeldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA.
 ^bDepartment of Chemistry and Center for Analytical Instrumentation Development, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
 ^cCenter for Analytical Instrumentation Development, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
 *Corresponding author. Email: ouyang@purdue.edu;

Drug	Precursor ion (m/z)	Product ion (m/z)	Collision energy (V)	Tube lens
Morphine-d3	289.1	201.0 -(C ₄ H ₄ D ₃ NO)	25	102
Benzyolecgonine [C ₁₆ H ₁₉ NO ₄ +H] ⁺	290.0	168.0 -(C ₇ H ₆ O ₂) ²	18	146
Benzyolecgonine-d3	293.0	171.0 -(C ₇ H ₆ O ₂)	18	146
Cocaine [C ₁₇ H ₂₁ NO ₄ +H] ⁺	304.0	182.0 -(C ₇ H ₆ O ₂) ³	20	78
Cocaine-d3	307.0	185.0 -(C ₇ H ₆ O ₂)	20	78
6-acetylmorphine [C ₁₉ H ₂₁ NO ₄ +H] ⁺	328.3	164.9 -(C ₆ H ₁₃ NO ₄) ⁴	26	117
6-acetylmorphine-d3	331.3	164.9 -(C ₆ H ₁₀ D ₃ NO ₄)	26	117
Methamphetamine $[C_{10}H_{15}N+H]^+$	150.1	91.1 -(C ₃ H ₉ N) ⁵	24	69
Methamphetamine-d8	158.1	93.1 -(C ₃ H ₃ D ₆ N)	24	69
Oxycodone $[C_{18}H_{21}NO_4+H]^+$	316.1	298.0-(H ₂ O) ⁶	20	80
		241.0 -(C ₃ H ₇ O ₂)	26	80
Oxycodone-d6	322.1	304.8 -(H ₂ O)	20	80
		247.0 -(C ₃ H ₇ O ₂)	26	80
Buprenorphine $[C_{29}H_{41}NO_4+H]^+$	468.2	396.1 -(C ₄ H ₈ O) ⁷	36	64
Buprenorphine-d4	472.2	400.1 -(C₄H ₈ O)	36	64

 Table S-1. Tandem mass spectrometric parameters for paper spray.

Fig. S1. Optimization of experimental conditions for quantitative paper spray mass spectrometry. Effect of spray solvent on (a) the signal intensity and (b) the ratio of analyte to internal standard (A/IS) of benzyolecgonine $[(M+H)^+, m/z 290.0, product ion, m/z 168.0]$. Effect of acetonitrile percentage in water on (c) the signal intensity and (d) the ratio of analyte to internal standard (A/IS) of benzyolecgonine. Effect of blood size on (e) the signal intensity and (f) the ratio of analyte to internal standard (A/IS) of benzyolecgonine.

Fig. S2. MS spectra (mass range: m/z 200-1000) by Orbitrap and MS/MS spectra (parent ion: m/z 316.1, mass range: 297.0-299.0 and 240.0-242.0) by TSQ for blank dried blood spot with different treatment of paper: (a) untreated 31 ET paper, (b) 31 ET paper washed by water, (c) 31 ET paper washed by 10⁻³ M HNO3 aqueous solution and (d) ET paper washed by NaClO aqueous solution (Cl% = 1.5 g/L, pH=12). Paper spray solvent: 90% acetonitrile: 10% water solution; solvent volume: 25 µL; Voltage: 3.5 kV.

References

- ¹ C. Poeaknapo, U. Fisinger, M. H. Zenk and J. Schmidt, *Phytochemistry*, 2004, **65**, 1413–1420.
- ² W. F. Smyth, *Electrophoresis*, 2005, **26**, 1334–1357.
- ³ O. Curcuruto, F. Guidugli and P. Traldi, *Rapid Commun. Mass Spectrom.* 1992, **6**, 436-437.

⁴ K. Raith and R. Neubert, J. Am. Soc. Mass Spectrom., 2003, **14**, 1262–1269.

⁵ W. E. Steiner, B. H. Clowers, K. Fuhrer, M. Gonin, L. M. Matz, W. F. Siems, A. J. Schultz and H. H. Hill, *Rapid Commun. Mass Spectrom.* 2001, **15**, 2221-2226.

⁶ K. Pennanen, T. Kotiaho, K. Huikko and R. Kostiainen, *J. Mass Spectrom.*, 2001, **36**, 791–797.

⁷ D. Favretto, G. Frison, S. Vogliardi and S. D. Ferrara, *Rapid Commun. Mass Spectrom.* 2006, **20**, 1257-1265.