
Legends to Supplementary Figures  

 

Supplementary Figure-S1. Levels of the nine members of the let-7 family in pediatric 

malignant-GCTs. A) Levels were determined in 20 samples from set-1 with matched 

microRNA and mRNA profiling. Values were determined from microarray data and were 

normalized to the mean of the three normal gonadal control samples. B) Linear-regression 

analysis of each individual let-7 family member versus LIN28 levels for the set-1 samples. 

The data are color-coded by sample type, as in the key. 

 

Supplementary Figure-S2. PCR quantification of let-7e, LIN28 and LIN28B in 

malignant-GCTs. The graphs show levels of let-7e versus levels of LIN28 (left) and 

LIN28B (right). All values were determined by qRT-PCR in sample set-3. Correlation p-

values were determined by linear-regression. The data are color-coded by sample type, as 

in the key. 

 

Supplementary Figure-S3. Sylamer analysis of up-regulated genes in pediatric and 

adult malignant-GCTs. Sylamer landscape plots for SCR words corresponding to the 

common seed of the nine let-7 microRNA family members, in pediatric malignant-GCTs 

(set-1; top panel) and adult malignant-GCTs (set-2; lower panel). Log10-transformed and 

sign-adjusted enrichment p-values for each SCR word, relative to p-values of all other 

words, are plotted on the y-axis, against the ranked gene list on the x-axis (orientated with 

down-regulated genes to the left and up-regulated genes to the right). A negative y-axis 

deflection on the right-hand side of the plot therefore signifies SCR enrichment in up-
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regulated genes. For each comparison, the left-hand plot shows data for the hexamer 

complementary to the core 2-7nt component of the common seed-region, the central plot 

the two heptamers (1-7nt; 2-8nt), and the right-hand plot the octamer (1-8nt). The single 

summed significance score and p-value for all four SCR words in each comparison are 

given in each left-hand plot. 

 

Supplementary Figure-S4. Correlations between levels of let-7 and mRNA targets. In 

each graph, the x-axis shows median levels of the nine let-7 family members, while the y-

axis shows levels of each mRNA. Data were obtained from microarray analyses of the 20 

pediatric malignant-GCTs from set-1 with matched microRNA and mRNA profiling. 

Correlation p-values were determined by linear-regression. Samples are color-coded, as in 

the key. 

 

Supplementary Figure-S5. PCR quantification of HMGA2 in pediatric malignant-

GCTs. The graphs show: A) HMGA2 levels in the 32 samples from set-3; B) mean 

expression levels of HMGA2 in GCTs of different histologic types from set-3; and C) 

linear-regression analysis of HMGA2 versus let-7e levels. CL = cell-line. Error-bars=SEM. 

Samples are color-coded, as in the key. 

 

Supplementary Figure-S6. PCR validation of expression of selected let-7 mRNA 

targets in pediatric malignant-GCTs. The graphs show mean qRT-PCR expression the 

32 samples from set-3. The left-hand column shows mRNAs over-expressed in malignant-

GCTs of particular histologic subtypes, compared to the control samples used, while the 
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right-hand column shows mRNAs that were over-expressed in all malignant GCT 

subtypes. Error-bars=SEM. Samples are color-coded, as in the key. 

 

Supplementary Figure-S7. Effects of LIN28 depletion in malignant-GCT cells. A) Western 

blots showing LIN28 protein expression in 2102Ep on d1, d2, d6 and d7 following LIN28 

depletion, compared with NTC-treated cells. For corresponding western blots for d3-d5, see 

Figure-3A. By densitometry, LIN28 protein levels were 30-40% of those in NTC-treated cells 

on d1 and d2 and <10% on d3 to d7. B) Western blots showing LIN28 expression on d4 

following LIN28 depletion in TCam2 (left), 1411H (centre) and GCT44 (right), compared with 

NTC-treated cells. C) The graph plots LIN28 protein vs. transcript levels for all four 

malignant-GCT cell-lines on d4 following LIN28 depletion. All values were compared with 

NTC-treated cells. D) Relationship between LIN28 protein levels and cell growth in all four 

malignant-GCT cell-lines on d4 following LIN28 depletion. All values were compared with 

NTC-treated cells. NTC=non-targeting-control siRNA, kd=knockdown. Protein levels were 

quantified by densitometry. Correlation p-values were determined by linear-regression. Error-

bars=SEM. 

 

Supplementary Figure-S8. Independent confirmation of specific effects of LIN28 

depletion in malignant-GCT cells. A) LIN28 and LIN28B levels in 2102Ep cells on d4 

following transfection with two independent LIN28 siRNAs (Hs_LIN28_7, left; Hs_LIN28_8, 

right) at 66.7nM, as measured by qRT-PCR. Treatment with each siRNA resulted in significant 

depletion of LIN28, but not LIN28B. NTC = Qiagen AllStars non-targeting-control siRNA 

(catalogue number 1027280), at 66.7nM; kd=knockdown. B) Cell numbers on d4, relative to 
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d0, in the experiments shown in A). Treatment with each siRNA resulted in significantly 

reduced cell numbers compared with NTC-treated cells. C) Levels of let-7e on d4 in the 

experiments shown in A) and B). Treatment with each siRNA resulted in significantly 

increased let-7e levels compared with NTC-treated cells. Error-bars=SEM. 

 

Supplementary Figure-S9. Effects of let-7e mimic in malignant-GCT cells. A) Levels 

of four let-7 mRNA targets (MYCN, AURKB, LIN28 and LIN28B) at d1-d3 following 

transfection of 2102Ep with let-7e mimic, referenced to cells treated with mimic negative 

control (MNC). B) Mean expression of each mRNA over d1-d3 versus the number of let-

7 SCRs in the 3’UTR of each gene. The correlation p-value was determined by linear-

regression. C) Depiction of the let-7e SCR in the LIN28 3’UTR. Let-7e is used as a 

representative let-7 family member. The 2-7nt seed and the corresponding SCR sequence 

are underlined. 

 

Supplementary Figure-S10. Relationships between MYCN and C-MYC versus LIN28 

and LIN28B in malignant-GCTs. A) Microarray levels of CMYC (left) and MYCN (right) 

versus LIN28 in pediatric samples (upper panel; set-1) and adult samples (lower panel; set-

2). B) qRT-PCR levels of MYCN versus LIN28 (left) and LIN28B (right), as determined in 

sample set-3. All correlation p-values were determined by linear-regression. Samples are 

color-coded, as in the key. 

 

Supplementary Figure-S11. MYCN depletion in malignant-GCTs. Cell numbers and qRT-

PCR expression levels of MYCN, LIN28 and LIN28B on d1 and d2 following MYCN depletion 
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in 2102Ep (left) and TCam2 (right), referenced to NTC-treated cells. Error-bars=SEM. 

*=p<0.05;**=p<0.005;***=p�0.0001. MYCN depletion was also confirmed at the protein level 

by Western blot in 2102Ep cells on both d1 and d2 following MYCN depletion. Levels were 

reduced to 60.2% and 60.7%, respectively (data not shown). 

 

Supplementary Figure-S12. Schematic of the LIN28/let-7 axis in malignant-GCTs. In 

the nuclei of malignant-GCT cells, LIN28 binds the stem-loop of pri-let-7, preventing 

processing by Drosha, most likely resulting in rapid degradation of primary transcripts. 

The pre-let-7 that is generated is exported from the nucleus by Exportin 5. Cytoplasmic 

LIN28 also binds the stem-loop (10) and recruits the terminal-uridyl-transferase enzyme 

ZCCHC11 (10,11), resulting in 3’ uridylation of pre-let-7, preventing subsequent 

processing by Dicer and targeting the pre-let-7 for degradation (12). In malignant-GCTs, 

the high LIN28 levels are also likely to prevent KSRP binding to the stem-loop of both 

pri-let-7 and pre-let-7 molecules (13), preventing the promotion of let-7 maturation. 

Consequently, low levels of all mature let-7 family members are observed in malignant-

GCTs. This is likely to contribute to increased expression of pro-malignant genes, 

including MYCN and LIN28. Accordingly, double-negative feedback is likely to 

contribute to the maintenance of high levels of LIN28 in malignant-GCT cells. In 

addition, malignant-GCTs show down-regulation of other microRNAs (17) that regulate 

LIN28 via 3’UTR binding sites, e.g. miR-9, miR-30 family, miR-125 and miR-181 (14-

16), providing a likely further potential contribution to high LIN28 levels. 
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Legends to Supplementary Tables 

 

Supplementary Table-S1. Clinico-pathological data for sample set-3. These samples 

were principally used as a largely independent set for qRT-PCR validation of mRNA 

microarray profiling data. Of the 26 clinical specimens in the set, 23 were from pediatric 

patients (<16y). Nineteen were gonadal and seven extragonadal.  

 

Supplementary Table-S2. Primers used for mRNA qRT-PCR. 

 

Supplementary Table-S3. Expression of let-7 family microRNAs in pediatric 

malignant-GCTs. Data are from our previous analysis of sample set-1 (17). Fold-change 

is versus 14 non-malignant control samples (teratomas and normal gonadal controls). The 

microRNAs are ranked by adjusted p-value. The common 2-7nt seed sequence is 

underlined. 

 

Supplementary Table-S4. Let-7 mRNA targets identified in combined microarray 

analysis of pediatric and adult malignant-GCTs. The 27 genes are ranked by fold-

change in our microarray analysis of pediatric malignant-GCTs (sample set-1). The adult 

tumors were those in sample set-2. The linear-regression p-value was derived for the 

twenty set-1 samples with matched microRNA and mRNA profiles. The 16 genes 

selected for further analysis are highlighted in grey. 
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Supplementary Table-S5. The six let-7 mRNA targets selected following microarray 

and qRT-PCR analysis. The linear-regression p-value was derived from qRT-PCR 

analysis of let-7e and target gene levels in sample set-3. 
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