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1 Movies

The enclosed movies show the formation of the instability and our ability to
pattern it in the bistable regime.

Movie1:
Typical experiment for a gap a = 3.05mm, showing a sinusoidal desta-

bilization just before the sudden nucleation of a finger. Dimension of slab
29× 20mm. The movie is slowed down by a factor of 20.

Movie2:
Movie showing the reversibility of the instability and its hysteretic char-

acter. The transient domain is relatively small compared to the size of a
finger. Gap a = 3.04mm. Dimension of slab 13× 19mm. Real speed.

Movie3:
Movie showing that identical fingering occurs even when the air-elastomer

interface is replaced by an air-oil interface. The change in interfacial ten-
sion does not change either the onset of the instability or its wavelength,
suggesting that the effects of interfacial tension are unimportant at leading
order in determining this phenomenon.

Movie4:
Movie showing the possibility to nucleate a finger wherever along the

front in the hysteretic region, when the two plates have been separated by
a distance ∆z = 0.36mm. The needle used to poke the gel is made of
hydrophobic plastic. Gap a = 3.04mm. Dimension of slab 27×19mm. Real
speed.
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2 Theoretical model

Our two-dimensional elastic model of the instability successfully predicts the
wavelength and threshold without any fitting parameters. Here, we provide
further details of the theory associated with the calculations of the thickness
integral of the energy and the stability analysis of the model.

We recall that we are modeling an elastic solid initially occupying the
region of space −∞ < x < ∞, 0 < y < l, −a/2 < z < a/2 where a << l
and which is perfectly adhered to rigid glass plates at z = ±a/2. The glass
plates are then moved further apart by an amount ∆z so that they are at
z = ±(a + ∆z)/2 and we seek to understand the response of the elastomer
to this loading.

2.1 Quadratic form of the displacement and deformation
gradient (eqns. (1) and (2))

The displacement of a point in the elastomer initially at (x, y, z) is U(x, y, z).
Taking advantage of the thinness of the elastomer, we Taylor expand this
displacement to quadratic order in z giving

U(x, y, z) = A(x, y) + zB(x, y) + z2C(x, y) + ... (S.1)

Imposing symmetry about z = 0 we see that B lies in the ẑ direction while
A and C lie in the x − y plane. Requiring that U(x, y,±a/2) = ±∆zẑ/2
so that the displacement on the boundaries matches that of the plates, we
see that B = ∆zẑ/a and that A = −(a2/4)C. Since A is the displacement
of a point in the z = 0 plane and lies entirely in the z = 0 plane, we write
A = u so the entire displacement becomes

U(x, y, z) = (1− 4z2/a2)u(x, y) + (z∆z/a)ẑ, (S.2)

which corresponds to eqn. (1) in the article.
The deformation gradient F is defined as Fij = δij + ∂jUi. Using ∇ as

the in-plane gradient operator (i.e. ∇ = x̂ ∂
∂x + ŷ ∂

∂y ) and I as the in-plane
identity (I = x̂x̂ + ŷŷ) we can evaluate F as

F = I + (1− 4z2/a2)∇u− 8zuẑ/a2 + (1 + ∆z/a)ẑẑ, (S.3)

which is eqn. (2) in the article.
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Working in an x − y − z basis and breaking u into components as u =
uxx̂ + uyŷ we can write F explicitly as

F =

 1 + (1− 4z2

a2
)∂ux
∂x (1− 4z2

a2
)∂ux

∂y −8zux
a2

(1− 4z2

a2
)
∂uy

∂x 1 + (1− 4z2

a2
)
∂uy

∂y −8zuy

a2

0 0 1 + ∆z/a

 . (S.4)

2.2 2-D Energy Function (eqn. (3))

We write our two dimensional elastic energy as

L(u, P ) = µ

∫ a/2

−a/2

1
2Tr

(
F.F T

)
− P (x, y)(Det(F )− 1)

1 + ∆z/a
dz, (S.5)

where the first term is a standard neo-hookean energy density for a deformed
elastomer, and the second term models the elastomers incompressibility by
imposing thickness averaged incompressibility at every point in the x − y
plane via a pressure-like Lagrange multiplier field P (x, y). The coefficient
of this term is simply for algebraic convenience. Evaluating the first term
in this integral is a simple matter of expanding Tr

(
F.F T

)
and integrating

each term separately:

Tr
(
FF T

)
= 2 + (1− 4z2/a2)2Tr

(
∇u(∇u)T

)
+ (S.6)

64z2u · u/a4 + (1 + ∆z/a)2 + 2(1− 4z2/a2)∇ · u

∫ a/2

−a/2
Tr
(
F.F T

)
dz = a(2 + (1 + ∆z/a)2) +

4a

3
∇ · u

+
8a

15
Tr
(
∇u(∇u)T

)
+

16

3a
u · u (S.7)

=
5a

6
Tr
(
G.GT

)
+

16

3a
u · u + const (S.8)

In the last line we have introduced an effective two dimensional deformation
gradient G = I + 4

5∇u.
The second term in the energy can be treated in a similar way. We first

note that Det(F ) = (1 + ∆z/a)Det
(
I + (1− 4z2/a2)∇u

)
. Secondly, we use

the (two-dimensional) relation that Det(I + cB) = 1 + cTr (B) + c2Det(B)
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to expand Det(F ) then integrate each term separately giving:∫ a/2

−a/2
Det(F ) dz =a

(
1 +

∆z

a

)
(S.9)

×
(

1 +
2

3
Tr (∇u) +

8

15
Det(∇u)

)
.

Applying the same identity, this can be rewritten as a(1+∆z/a)(5Det(G)+
1)/6. Assembling these two results, we can write the entire integrated energy
as

L =
5µa

6

(
1

2
Tr
(
G.GT

)
+

16

5

u · u
a2

(S.10)

−P
(

Det(G)− 1 +
6∆z

5(a+ ∆z)

)
+ const

)
.

Finally, we neglect the constant, drop the pre-factor and, since ∆zt ∼
a2/l << l, replace ∆z/(a+ ∆z) by ∆z/a, to write

L ∝ 1
2Tr

(
G.GT

)
+ 16

5 |u/a|
2 − P

(
Det(G)− 1 + 6

5∆z/a
)
,

which corresponds to eqn. (3) in the main article.

2.3 Bulk equations and boundary conditions (eqns. (4)-(5))

We now seek to minimize the total energy of the elastomer, so we find the
Euler-Lagrange equations for u and P :

∂j
∂L

∂∂jui
=
∂L

∂ui
(S.11)

∂L

∂P
= 0 (S.12)

The second of these straightforwardly evaluates to give

Det(G) = 1− 6
5∆z/a. (S.13)

The right-hand side of the first equation is also straightforward: ∂L/∂ui =
(5µa/6)(32/5)ui/a

2. The left-hand side can be evaluated using the result
that ∂Det(A) /∂Aij = Det(A)A−Tij , so we have

∂L

∂∂jui
=

5µa

6

(
4
5Gij − 4

5PDet(G)G−Tij

)
. (S.14)
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To construct the whole equation we need one final result, ∂jDet(G)G−Tij = 0,
which is easily seen by explicitly writing out G. We can then write the entire
equation as

4
5a

2∇2u−Det(G)G−T · a2∇P = 8u. (S.15)

Equations S.15 and S.13 correspond to eqn. (4) in the main article.
Since our problem does not impose any additional constraints at y = 0, l

we take the natural boundary conditions, corresponding to an unconstrained
minimization of the energy, given by ∂L

∂∂jui
n̂j = 0 where n̂ is the unit normal

vector at the boundary. In our case n̂ = ŷ on both boundaries. We have
already evaluated this derivative, so we can immediately write the boundary
condition as (

G− PDet(G)G−T
)
· ŷ = 0. (S.16)

corresponding to eqn. (5) in the main article.

2.4 Solving the model (eqns. (6) to (14))

To solve our model, we introduce a trial form for the solutions consisting of
a large translationally invariant part and an infinitesimal oscillatory part:

u = Y1(y)ŷ + ε cos (kx)Y2(y)ŷ + ε sin (kx)X2(y)x̂ (S.17)

P = 1 + P1(y) + ε cos (kx)P2(y). (S.18)

The translationally invariant part corresponds to the deformations before
the fingering instability, which we call the base-state. Working in the x− y
coordinate system we have

G1 =

(
1 0
0 1 + 4

5Y
′
1(y)

)
, (S.19)

and

Det(G1)G
−T
1 =

(
1 + 4

5Y
′
1(y) 0

0 1

)
. (S.20)

Substituting G1 into eqn. S.13 we get

4
5Y
′
1(y) = −6

5∆z/a, (S.21)

which we can solve for Y1 to get

Y1(y) =
3∆z(l − 2y)

4a
, (S.22)
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in which we have fixed the constant on integration by requiring that Y1(l/2) =
0 to preserve the symmetry about y = l/2. This corresponds to eqn. (8) in
the main article. Since ∇P = P ′1(y)ŷ , we can write eqn. S.15 as

4
5a

2Y ′′1 (y)− a2P ′1(y) = 8Y1(y). (S.23)

This can be integrated to find

P1(y) = 6y∆z(y − l)/a3 − 6
5∆z/a. (S.24)

This corresponds to eqn. (9) in the main article. The constant of integration
has been found by applying the boundary condition (eqn. S.16) which reads:

(45Y
′
1(y)− P1(y))

∣∣
y=0,l

= 0. (S.25)

We consider adding an infinitesimal oscillatory perturbation to the base-
state to examine its stability. We now have

G = G1 +
4ε

5

(
k cos (kx)X2(y) sin (kx)X ′2(y)
−k sin (kx)Y2(y) cos (kx)Y ′2(y)

)
, (S.26)

Det(G)G−T = Det(G1)G
−T
1 (S.27)

+
4ε

5

(
cos (kx)Y ′2(y) k sin (kx)Y2(y)
− sin (kx)X ′2(y) k cos (kx)X2(y)

)
.

Substituting G into eqn. S.13 and expanding to first (linear) order in ε gives

ε cos (kx)((1 + 4
5Y
′
1(y))kX2(y) + Y ′2(y)) = 0 (S.28)

Recalling the form of Y1(y) we see that

Y ′1(y) = −3∆z

2a
. (S.29)

We expect the threshold value of ∆z to scale as ∆zt ∼ a2/l so, in the limit
of a << l, we expect ∆zt << a and hence Y ′1(y) << 1. This means we can
neglect Y ′1(y) in the above equation, so the solution for X2(y) is simply

X2(y) = −Y ′2(y)/k. (S.30)

We can also write ∇P as

∇P =

(
−εk sin (kx)P2(y)

P ′1(y) + εP ′2(y) cos (kx)

)
, (S.31)
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so the x component of eqn. S.15 is, to linear order in ε,

4
5a

2(X ′′2 (y)− k2X2(y)) (S.32)

+ a2((1 + 4
5Y
′
1(y))kP2(y)− 4

5kY2(y)P ′1(y)) = 8X2(y)

We can again neglect Y ′1(y) << 1 term so, substituting in our solution for
X2(y), we can solve for algebraically for P2 to get

P2(y) =
4

5

(
Y2(y)P ′1(y)−

(
1 +

10

a2k2

)
Y ′2(y) +

Y ′′′2 (y)

k2

)
. (S.33)

Finally, we can evaluate the y component of eqn. S.15 to linear order in ε to
get

4
5a

2(Y ′′2 (y)− k2Y2(y))− a2(P ′2(y)+4
5kX2(y)P ′1(y))

= 8Y2(y). (S.34)

Substituting in our results for X2(y) and P2(y) gives

k2Y2(y)
(
10 + a2k2 + a2P ′′1 (y)

)
+ a2Y

(4)
2 (y) (S.35)

= 2
(
5 + a2k2

)
Y ′′2 (y).

Recalling the form of P1, we see that

a2P ′′1 (y) = 12∆z/a (S.36)

so, as with Y ′1(y), we see that a2P ′′1 (y) << 1 when a << l so we can ignore
P ′′1 (y) in the above equation giving

a2k2Y2(y)
(
10 + a2k2

)
+ a4Y

(4)
2 (y) (S.37)

= 2
(
5 + a2k2

)
a2Y ′′2 (y),

which corresponds to eqn. (10) in the main article. We focus on the bound-
ary at y = 0 and so look for solutions that decay as y →∞. We write Y2 as
a linear sum of the two such solutions

Y2 = c1 exp
(
−
√

10/a2 + k2y
)

+ c2 exp (−ky), (S.38)

which is equation (11) in the main article.
We impose the boundary condition at y = 0. Since these solutions decay

as y → ∞ we can neglect the boundary condition at y = l. The linear
correction to the boundary condition at y = 0 (eqn. S.16) is

4

5

(
X ′2(0)
Y ′2(0)

)
= P2(0)

(
0
1

)
+ (1 + P1(0))

(
4
5kY2(0)
4
5kX2(0)

)
. (S.39)
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However, P1(0) = −6
5∆z/a → 0 when a << l so the x component, after

substituting for X2, is
− Y ′′2 (0) = k2Y2(0). (S.40)

Substituting in our result for Y2 we solve for c2 to get

c1 = −c2
a2k2

5 + a2k2
. (S.41)

The y component requires us to evaluate P2(0). To do this we first note that

−
(

1 +
10

a2k2

)
Y ′2(0) +

Y ′′′2 (0)

k2
=

10c2
a2k

, (S.42)

and secondly that P ′1(0) = −6l∆z/a3, which does not vanish for a << l
because it contains a power of l. Assembling the entire boundary condition
then gives

Y ′2(0) = −6l∆z

a3
Y2(0) +

10c2
a2k

− Y ′2(0), (S.43)

which, upon substituting for Y2 and c1 and solving algebraically for ∆zt
gives

∆zt =
a2

l

25 + a2k2
(

10 + ak
(
ak −

√
10 + a2k2

))
15ak

(S.44)

which corresponds to eqn. (12) in the main article. This result tells us the
threshold ∆z at which a mode with wave-number k becomes unstable. We
find the first unstable mode by minimizing this result over k, to predict that
the first unstable mode has

λ ≈ 2.74...a (S.45)

∆zt ≈ 1.69...a2/l. (S.46)

which correspond to equations (13)-(14) in the main article.

3 Numerical Simulations

All simulations were performed using the commercial finite element soft-
ware ABAQUS 6.11. A sketch of the simulation domain is shown in Fig.
S.1. Although the transition under examination is purely elastic, its subcrit-
ical nature means that it cannot be simulated using equilibrium methods,
so instead we use Newtonian dynamics with both numerical and viscous
damping. We ran two types of simulations: lower resolution simulations
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with many wavelengths to capture the behavior at onset and high reso-
lution simulations focusing on a single digit to capture the profile of the
fingers.

1. Material properties

The gel is modeled as an incompressible neo Hookean material with
shear modulus of 500Pa and a density 103Kg/m3. We used a large
Rayleigh damping model to ensure that the system is overdamped. For
a given mode i the fraction of critical damping, ξi, can be expressed
in terms of the damping factors αR and βR as:

ξi =
αR

2ωi
+
βRωi

2
, (S.47)

where ωi is the natural frequency at this mode, αR is for mass propor-
tional damping and βR is for stiffness proportional damping. To define
Rayleigh damping, we need to specify αR and βR. We load the bound-
ary near the critical displacement and perform a linear perturbation
procedure to extract ωi, i = 1 to 5, and correspondingly specify αR

to make ξi around 5. This is only a crude estimation of the damping
coefficient as the stiffness matrix is a function of strain. When the
fingers are fully grown, we expect the natural frequency is different
from that of the onset state. After a try and error, we set αR = 8000
to 10000 to damp out the lowest frequency oscillation. For the highest
frequency, we rely on numerical damping (which will be documented
later) and set βR = 0.

2. Boundary conditions

Symmetric boundary conditions are applied on the two lateral planes
(highlighted in yellow), the middle plane (light grey), and the back
plane (blue). Therefore only a quarter of the physical thin slab is sim-
ulated to save computational power. The front surface (green) is stress
free and Gaussian white noise is applied on its initial y coordinate in or-
der to trigger the instability at the critical loading displacement. The
mean magnitude of the noise is 2% of the smallest mesh size inside
the system. The top surface is pulled apart at such a small constant
velocity that it always takes 5 to 10 minutes before the top surface is
loaded up to the critical displacement. Once oscillations of the front
surface ore detected., the pulling is stopped and the top surface is held
still while the system evolves freely.
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3. Meshes and elements

First, to get the displacement and wavelength of the onset of the in-
stability, we run the simulation in a long cell (which contains 8 to 9
wavelengths) containing 401 nodes for the length, 76 nodes for the
half-width and 26 nodes for the half-gap. This is more than adequate
to detect the point of onset and the wavelength of the unstable mode,
but, as the fingers grow, the strain at the tip of the fingers becomes
very large (greater than 7) so we need a finer mesh. In order to cap-
ture the profile of the fully grown finger, we set the length of gel slab
as half the previously calculated wavelength, and keep the boundary
conditions the same. We use 201×76×26 nodes to a quarter of a single
finger, which is sufficient to resolve its full profile, even with the very
large strains at its tip. Mesh density is geometrically biased towards
the free front and middle plane, where the nonlinearity is the most pro-
nounced after instability happens. C3D8H (8-node linear brick, hybrid
with constant pressure) elements are adopted. The pressure penalty
serves as an additional degree of freedom to ensure the constraint of
incompressibility.

4. Time integrator

As the material is incompressible, it is impossible to simulate the dy-
namic response with an explicit method as the stable time increment
would be inversely proportional to the bulk modulus. Therefore we use
an implicit method. Both the Hilber-Hughes-Taylor (HHT) integrator
and backward Euler integrator gave the same onset of instability and
fastest growing mode. In our system, we did not resolve the high-
frequency vibrations and used a large numerical dissipation to obtain
convergence during the loading history. In the HHT scheme, we choose
α = −1/3, β = 1/4(1− α)2 and γ = 1/2− α to achieve the maximum
numerical damping [1] with an adaptive time step which is reduced in
the neighborhood of instability.

5. Dimensions of the samples

We choose layer dimensions to ensure that the ratio of the width to
the gap thickness is large (over 10) so that the layer can reasonably be
thought of as thin. Our choice of length containing 8-9 wavelengths
was determined to keep a low overhead on the computational costs. We
note that this causes some end-effects in our simulation, which explains
why the calculated wavelength is slightly below our experimentally
observed wavelength. Tab. 1 shows the sample dimensions used, while
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a/2

l/
2

Figure S.1: Sketch of the simulation domain. Only a quarter of the thin
slab is simulated. To detect whether the front surface (green) is oscillatory,
we extract the displacement at the intersection line (red) where the middle
plan (light grey) and front surface meet.

Table 1: Sample Dimensions (mm)
length 10 20 30 40 50 60 70 80 100.2 149

width 40 40 40 40 60 60 80 80 58.5 55.8

gap thickness 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.04 7.45

Fig. S.2 shows the 3D geometry of the fully grown finger right after
the instability. Only one finger with periodic boundary conditions was
actually simulated.
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Figure S.2: 3D geometry of a single finger right after the instability. Only
one finger was simulated with periodic boundary conditions. ADOBE
READER allows for the manipulation of this interactive figure.
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