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Steady-state solution of the Fussenegger model of intrinsic apoptosis pathway 

A deterministic ODE model accounting for the intrinsic apoptosis signaling pathway has been proposed 

by Fussenegger et al. The 5-dimensional differential equations are listed below and the details of the 

model can be found in the main text:  
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In the following, we demonstrate analytically that this model cannot be bistable in caspase response. 

Specifically, we seek to find out when given a input signal of Cytochrome C whether the model can yield 

three steady-state solutions of the output caspase-3 (CEA) or not. Now assuming that the system 

equilibrium is reached and the left-hand-side of the equations (S1) through (S5) are set to be zero, we 

analyze the mapping between the input value [CC] and the steady-state output [CEA] by checking the 

steady-state solution of each of the five variables, namely [a1cc], [c9p], [c9a], [c3p] and [CEA], in five 

steps: 

(1) The solution of (S1) with d[a1cc]/dt=0 is  
[CC]+1

[CC]
= [a1cc]

H11

1
ss Kk

k

r

f


. Therefore, given an input 

[CC] the solution of [a1cc] at steady state is unique and single.  

(2) The equation (S2) with d[c9p]/dt=0 can be rearranged into a 3rd-degree polynomial with respect 

to the steady-state solution [c9p]ss: 0]9[]9[]9[ 23  DpcCpcBpcA ssssss , where the polynomial 

coefficients are: 92 / A , 1)/(]1[/ 9292  Lssf KccakB  , LLK KKKC /1)/( 92   and

)/(1 LLKKD  . For typical parameter values of apoptosis pathway, the polynomial coefficients 

satisfy: A>0, C≤0 (typically μ2 ≤ Ω9KK [1]), and D<0. Under such constraints, it can be shown, by 

plotting the polynomial function DCxBxAxf  23  and locating the region of its turning 

points (by finding the roots of df/dx=0), that the x-coordinate of the turning point concaving 



downward is negative and the x-coordinate of the turning point concaving upward is positive. 

Therefore there exist only one or two non-negative solutions of sspc ]9[ , whose values are 

dependent on sscca ]1[ . 

(3) Setting d[c9p]/dt=0 and d[c9a]/dt=0, and substituting equation (S3) into equation (S2), we obtain 

a single unique solution: 329 /)]9[(]9[  ssss pcac  .  

(4)  Let d[c3p]/dt=0 and rearrange (S4), we obtain a quadratic equation with respect to [c3p]ss: 
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~
, for a quadratic 

equations there exists a single non-negative solution of sspc ]3[ given ssac ]9[ . 

(5) Finally, let d[c3p]/dt=0 and d[CEA]/dt=0, and substitute equation (S5) into equation (S4), we 

obtain a single unique solution: 
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In the above procedures, we have decomposed the pathway represented by the Fussenegger model 

into five sequential input-output relationships.  Each input-output relationship of the five propagating 

steps has a one-to-one mapping except for the second step, which has a one-to-one or one-to-two 

mapping. Therefore, the Fussenegger model could only have one or two steady-state solutions of the 

output [CEA] given any input value of [CC]. Since a bistable system requires that there exists three 

steady-state solutions of the output in certain range of input signal, we can conclude that the 

Fussenegger model is not bistable. 

 

Steady-state solution of our model of intrinsic apoptosis pathway with mutants of 
procaspase-9 

In the following we determine the contribution of the two feedback mechanisms, namely the autocatalysis 

regulation of caspase 9 and the caspase 3-mediated activation of caspaspe 9 (the green arrows in Figure 

1B), to the bistability of our model of intrinsic apoptosis pathway. Toward this end, we abolish these two 

feedback loops separately or simultaneously, mimicking three mutants of procaspase-9. Experimental 

evidences have suggested that the processing sites Asp-315 and Asp-330 of procaspase-9 are responsible 

for the autocatalysis regulation of caspase 9 and the caspase 3-mediated activation of caspaspe 9, 

respectively [2, 3]. We can therefore study the model response using the single mutant D315A, which is 

resistant to the autocatalysis of caspase 9, the single mutant D330, which is refractory to the caspase 3-

mediated feedback activation of caspaspe 9, and the double mutant D315A/D330A, which have both 

feedback mechanisms blocked [3, 4]. Note that Stennicke et al have shown that the mutant 



D315A/D330A still maintained partial activity comparing to the wild type case. To account for the partial 

activation, we assume that the mutation at Asp315 abolishes only the positive autoregulation of caspase 9, 

by removing the term [c9a] in equations (2) and (3) listed in the main text, while the feed-forward 

pathway of caspase 9 promoted by Apaf-1 still remains.  

First, the two single-mutant models of D315A and D330A are simulated and the steady-state input-

output relationships demonstrate that certain degree of bistability in the model is retained under both 

conditions (Figure S1). The residual bistability in both cases indicates that both of the positive feedback 

mechanisms contribute to the final bistable response of our complete model of intrinsic apoptosis pathway. 

The simulated steady-state response of the double mutant D315A/D330A, however, is not bistable 

indicating that removal of these two positive feedback loops abolish bistability (data not shown). This 

finding regarding the double mutant can also be confirmed analytically, using the same approach as the 

above analysis of the Fussenegger model, that the steady-state response of the D315A/D330A model is 

indeed not bistable, as the only difference in the proof is to replace ssac ]9[ by n
ssac ]9[ in step 4 and the final 

conclusion remains the same.  

As a summary, the study of the procaspase-9 mutants suggests that the two positive feedback loops 

embedded in our model are fully responsible for the bistability of the apoptosis response. 

 

 

 

 

 

 

 

 

 

 
 

Figure S1. Bistability property persists for the model of the mutant D330A (black curve), where the feedback of 
caspase-3-mediated activation of caspase 9 is eliminated, as well as for the model of the mutant D315A (gray curve), 
where the autocatalysis of caspase 9 is removed. The solid lines represent stable solutions of CEA, while the dashed 
lines represent unstable solutions of CEA.  
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