S1 Details of the model
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Figure 1: Illustration of the vessel network remodeling processes. The contents of the boxes display
exemplified states of the vessel network. The vessel segments are shown as blue boxes if perfused with blood,
else they are in a gray shade. Dark-blue borders (in C and E) represent vessel walls of varying thickness.
The presence of a tumor is hinted at by the light orange region. The state transitions go from left to right
as indicated by the arrows whereby the rate parameter is denoted below- and essential preconditions above
the arrows, respectively. The note “in tissue” or “in tumor” refers to the location of a segment, see text for
the precise definitions these conditions. In (A) a new sprout is generated. In this instance the preexisting
segment is split at the branching point. Subsequently a new sprout segment is added with its life-time counter
7 initialized to 1. I; denote the distances to neighboring branching points. Since vessels can be chained together
without branching points it is in general required to traverse such chains until I; > [(*?") or a branching point is
found. (B) depicts the further extension of the sprout from (A). It has already been extended to two segments
and a third segment is appended. The lengths of sprout segments are always exactly one lattice bond. 7
is inherited from the parent segment and incremented by 1 for all sprouts once per remodeling sweep. (C)
depicts the degradation of the vessel walls with the rate Aw. Though w is defined as an abstract measure, it
can be related to the wall thickness as shown here. w’ stands for the value at the next time step, i.e. using
Euler’s method w’ = w+ AtAw. In (D) an unstable vessel is removed, representing occlusion of blood flow and
complete disintegration. Such event is assumed to happen only to vessels with maximally degenerate walls and
low wall shear-stresses. Previously attached vessels can become dead ends which means blood cannot circulate
through them any more. Such segments are identified by the biconnected component graph-algorithm [1] and
excluded from blood flow computations. Since these vessels trivially have f < f(¢°) they can collapse easily,
resulting in a long ranged effect. (E) depicts the dilation of tumor vessels. The new radius after one time step
is ' =r+ AtAr.
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Figure 2: Sketch of the vessel network generation algorithm. For illustration we display subsequent
actual configurations from a run on a 10 x 10 x 2 lattice. The background mesh depicts the z = 0 layer of
lattice. The color code for the vessels generally shows arteries in red and veins in blue. If blood flow data is
available (D to H) the blood pressure is mapped to a red-blue gradient. The two circles (see A) display the
location of the root nodes. Here are just two, but for our other results we placed them in alternating order at
all boundary sites of the lattice. (A) shows the state after two growth iterations. Stars indicate the open ends
where further elements can be appended (also in B). (B) shows the state during the random growth process.
(C) shows the state at the end of the random growth process. Further additions would cause overlap which
is forbidden. In (D) capillaries were added, radii computed and blood flow computed. Unperfused branches
are displayed in dark gray. Capillaries are green. (E) displays the state after shear-stress based remodeling.
(F) shows the network on a lattice which was upscaled once, doubling the number of sites and the length of
the original vessel segments to span over two lattice bonds. Previous tips served as starting points for random
growth as in A to C. This was followed by determination of radii, generation of capillaries, and computation
of blood flow as in C to D. (G) shows the result from (F) after remodeling. Here perfused capillaries are well
distributed. (H) shows the final state after an additional up-scaling step.



Initial blood vessel network construction

Random growth: The addition of a new element ¢ at a tree tip is determined by probability weights w, for
all possible additions ¢q. Specifically, we must consider the type and orientation of a new element. Additions
resulting in overlap with the existing network are forbidden. Also we allow only additions in the forward
direction. For non-admissible configurations we set wy = 0, else we set w, = cos(y), where ¢ denotes the angle
between the element and the parent branch. A specific element for addition is then picked according to the
probabilities generated from the normalized weights pg = w,/(3_, wy)-

Remodeling: In addition to the selection of the growth direction we must determine for each site on the
network whether a new element is attached, a segment is removed, which is only possible at tree tips or if no
changes are made. For these cases the following probability weights for growth wg, regression, wq and idleness
w; are given

wg:f/fmaw
wdzl_f/fmaz
w; = oo if f =0 and not N(x), else 0,

where N is a boolean indicator function which maps to true if and only if there are perfused vessels within
the range of 3L, = 240pum, f is the shear stress and f,q, is the maximal stress over all of the tree tips. The
probabilities for an event are given by the normalized weights as above, as well as the probabilities for the
element type and its orientation. Against this background we wrote w; = oo for the symbolic meaning that it
yields py = 0,pq = 0,p; = 1.

Pressure radius relation

The root nodes of the trees have fixed blood pressures as boundary condition. Their value is determined by an
empirical formula which was fit to Fig. 5 in [2].

v’ = r for a vein, else — 7
Al =89,A2 =18,rg = —21,Ar = 16
P = 0.133[42 + (A1 — A2)/(1 + exp((r' — 10)/Ar))] (1)

in units of um for the radius r» and kPa for the pressure P. For our typical networks this yields pressures from
ca 2.5 to 12 kPa, where the radii of the root vessels are ca. 100 pum.

Radius wall-thickness relation

Initially the vessel wall thickness w(t = 0) = w(™*) must be well defined. Guided by [3], we use
w ™ = 2r(0.65 — 0.2log(2r)), (2)

depending on the vessel radius r. Sprouts are also created with w = w"),

Vessel-wall permeability to fluid

In reality vessels have differing degrees of wall permeabilities, e.g. leaky tumor vessels are very permeable, and
the thicker the vessel is the less permeable it should be. In order to adequately represent this we utilize the wall
thickness property w. The flux across the vessel wall is driven by the pressure difference, where the permeability
is the inverse resistance. We assume an ideal system where the resistance of the wall increases linearly with its
thickness analogous to an ohmic resistor. This leads us immediately to

(L) = max ((Aml, v )wml)_ , 3)

W(inat) (1 = Sum

where A7 and A\ n are experimentally determined permeabilities for capillaries in tumor and normal tissue.
W(ingt)(r = 5um) is initial thickness of capillary walls. Below that, w is a mere abstract representation of the
amount of leakiness. Therefore we are free to limit L; from above by A\; 7 in order to obtain reasonable values
for degenerated tumor vessels.

Vessel-wall permeability to nutrients and drug

These permeabilities are denoted L{ and LY

v, respectively. They are defined exactly the same as L} only the
indices are o or s instead of [.



Smoothed Heaviside and Dirac Delta functions

We adopt sin/cosine based formulas commonly used in level set and immersed boundary methods, see e.g. [4, 5].

Se(r) =1

€

(4)

$(1+cos(=2)) if [z <,
0 otherwise

0c(x) = de(xp)de(T1)de(2).

In addition to the convergence to the “sharp” Dirac delta it has the nice properties that it is continuous and
has limited support. The smoothed Heaviside function is the integral over d.(z) and reads

0 if v < —e,
O.(x) T+ 24 Lein(ZE)]  if |z <k, .
1 otherwise
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