

Supporting Information © Wiley-VCH 2013

69451 Weinheim, Germany

Control of Selectivity in Palladium-Catalyzed Oxidative Carbocyclization/Borylation of Allenynes**

Youqian Deng, Teresa Bartholomeyzik, and Jan-E. Bäckvall*

anie_201301167_sm_miscellaneous_information.pdf

Contents

General remarks	S2
Preparation of allenynes	S3
General procedure for selective formation of borylated trienes 4	S3
General procedure for selective formation of borylated vinylallenes 5	S8
Explanation for the formation of 4f' from 4f	S12
Application of product 5d	S13
Kinetic isotope effect experiments	S14
Alternative mechanism	S21
References	S21
Copies of spectra	S22

Experimental Section

General remarks

Unless otherwise noted, all reagents were used as received from the commercial suppliers. B₂pin₂ was commercially available from Combi-Blocks. Pd(OAc)₂ was obtained from Pressure Chemicals and used without further purification. Palladium-catalyzed cyclizations were performed without any efforts to exclude moisture. Dry solvents (Et₂O, THF) were obtained from a VAC Solvent Purifier. Reactions were monitored using thin-layer chromatography (SiO₂). TLC plates were visualized with UV light (254 nm) or KMnO₄ stain. Flash chromatography was carried out with 60Å (particle size 35-70 μ m) normal flash silica gel. NMR spectra were recorded at 400 MHz (¹H) or 500 MHz (¹H) and at 100 MHz (¹³C) or 125 MHz (¹³C), respectively. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ ($\delta_{\rm H} = 7.26$ and $\delta_{\rm C} = 77.0$ ppm) as internal standard, and coupling constants (*J*) are given in Hz. HRMS were recorded using ESI-TOF techniques.

General procedure for preparation of starting materials

All bromoallenes were prepared according to the procedure published by Landor^{1a} with minor modifications.^{1b}

Dimethyl propargylmalonate is commercially available from Aldrich. Other alkyl substituted dimethyl propargylmalonates were prepared as described in the literature.²

Allenynes **1a-g** were prepared as previously described.³

General procedure for oxidative carbocyclization/borylation for the formation of trienes 4

Representative procedure A for the synthesis of **4**. (E)-dimethyl 3-(prop-1-en-2-yl)-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-propylidene)cyclopent-2-ene-1,1dicarboxylate (**4***a*)

To a mixture of B_2pin_2 (33.1 mg, 0.13 mmol), BQ (12.2 mg, 0.11 mmol), Pd(OAc)₂ (0.5 mg, 0.002 mmol), and LiOAc·2H₂O (1.8 mg, 0.02 mmol) were added **1a** (26.0 mg, 0.10 mmol) and 0.5 mL of DCE at rt. The reaction was stirred at 50 °C for 15 h. After the reaction was complete as monitored by TLC, evaporation and column chromatography on silica gel (pentane/ethyl acetate = 10/1) afforded **4a** (27.9 mg,

73%) as a liquid; ¹H NMR (500 MHz, CDCl₃): δ 5.93 (s, 1H), 5.02-5.00 (m, 2H), 3.72 (s, 6H), 3.20 (s, 2H), 2.19 (q, *J* = 7.5 Hz, 2H), 1.95 (s, 3H), 1.26 (s, 12H), 1.02 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.1, 151.1, 147.9, 139.8, 129.1, 116.6, 83.3, 63.0, 52.9, 37.5, 27.0, 25.2, 23.8, 13.4; HRMS (ESI): calc. for C₂₁H₃₁BNaO₆ [M+Na]⁺: 413.2110; found: 413.2113.

(E)-dimethyl 3-(prop-1-en-2-yl)-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethylidene)cyclopent-2-ene-1,1-dicarboxylate (**4b**).^{3b}

92% isolated yield, solid. ¹H NMR (400 MHz, CDCl₃): δ 5.91 (s, 1H), 5.01-4.96 (m, 2H), 3.72 (s, 6H), 3.16 (s, 2H), 1.95 (s, 3H), 1.78 (s, 3H), 1.24 (s, 12H).

Compound **4c** and **4c**' were obtained as an inseparable mixture. (E)-dimethyl 3-((Z)-but-2-en-2-yl)-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethylidene)cyclopent-2-ene-1,1-dicarboxylate (Z-**4c**)

Liquid; ¹H NMR (500 MHz, CDCl₃): δ 5.81 (d, J = 0.5 Hz, 1H), 5.37 (qt, $J_I = 6.5$ Hz, $J_2 = 1.5$ Hz, 1H), 3.71 (s, 6H), 3.14 (s, 2H), 1.84 (d, J = 1.5 Hz, 3H), 1.76 (s, 3H), 1.45 (dd, $J_I = 6.5$ Hz, $J_2 = 1.5$ Hz, 3H), 1.24 (s, 12H); HRMS (ESI): calc. for C₂₁H₃₁BNaO₆ [M+Na]⁺: 413.2110; found: 413.2116.

(E)-dimethyl 3-(but-1-en-2-yl)-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethylidene)cyclopent-2-ene-1,1-dicarboxylate (**4c**')

Liquid; ¹H NMR (500 MHz, CDCl₃): δ 5.89 (s, 1H), 4.990 (s, 1H), 4.989 (s, 1H), 3.71 (s, 6H), 3.16 (s, 2H), 2.26 (qt, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz, 2H), 1.76 (s, 3H), 1.02 (t, J = 7.5 Hz, 3H); HRMS (ESI): calc. for C₂₁H₃₁BNaO₆ [M+Na]⁺: 413.2110; found: 413.2116.

(E)-dimethyl 3-(prop-1-en-2-yl)-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexylidene)cyclopent-2-ene-1,1-dicarboxylate (**4d**)

81% isolated yield, liquid. ¹H NMR (400 MHz, CDCl₃): δ 5.92 (s, 1H), 5.01-4.99 (m, 2H), 3.72 (s, 6H), 3.19 (s, 2H), 2.18-2.11 (m, 2H), 1.95 (s, 3H), 1.42-1.35 (m, 2H), 1.34-1.26 (m, 4H), 1.25 (s, 12H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 151.1, 148.0, 139.8, 129.0, 116.5, 83.3, 63.0, 52.8, 37.7, 34.1, 32.0, 28.6, 25.2, 25.0, 23.8, 22.5, 14.0; HRMS (ESI): calc. for C₂₄H₃₇BNaO₆ [M+Na]⁺: 455.2580; found: 455.2577.

 $[D_2]$ -(E)-dimethyl 3-(prop-1-en-2-yl)-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) hexylidene)cyclopent-2-ene-1,1-dicarboxylate ($[D_2]$ -4d)

84% isolated yield (Scheme 3b), liquid. ¹H NMR (400 MHz, CDCl₃): δ 5.91 (s, 1H), 5.00-4.98 (m, 2H), 3.70 (s, 6H), 3.18 (s, 2H), 1.93 (t, *J* = 1.2 Hz, 3H), 1.40-1.34 (m, 2H), 1.33-1.25 (m, 4H), 1.23 (s, 12H), 0.87 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 151.1, 148.0, 139.8, 129.0, 116.5, 83.2, 62.9, 52.8, 37.7, 31.9, 28.4, 25.2, 24.9, 23.7, 22.5, 13.9; HRMS (ESI): calc. for $C_{24}H_{35}BD_2NaO_6$ [M+Na]⁺: 457.2705; found: 457.2706.

Compound **4e** and **4e'** were obtained as an inseparable mixture. (E)-dimethyl 3-((Z)-but-2-en-2-yl)-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexylidene)cyclopent-2-ene-1,1-dicarboxylate (Z-**4e**)

Liquid; ¹H NMR (500 MHz, CDCl₃): δ 5.82 (s, 1H), 5.37 (qq, $J_1 = 6.5$ Hz, $J_2 = 1.5$ Hz, 1H), 3.72 (s, 6H), 3.18 (s, 2H), 2.16-2.10 (m, 2H), 1.86 (t, J = 6.5 Hz, 3H), 1.45 (dq, $J_1 = 6.5$ Hz, $J_2 = 1.5$ Hz, 3H), 1.42-1.36 (m, 2H), 1.34-1.26 (m, 4H), 1.25 (s, 12H), 0.88 (t, J = 6.8 Hz, 3H); HRMS (ESI): calc. for C₂₅H₃₉BNaO₆ [M+Na]⁺: 469.2736; found: 469.2735.

(*E*)-dimethyl 3-cyclohexenyl-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexylidene) cyclopent-2-ene-1,1-dicarboxylate (**4f**)

28% isolated yield, liquid. ¹H NMR (500 MHz, CDCl₃): δ 5.91 (s, 1H), 5.77-5.72 (m, 1H), 3.72 (s, 6H), 3.19 (s, 2H), 2.22-2.14 (m, 4H), 2.11-2.04 (m, 2H), 1.70-1.64 (m, 2H), 1.63-1.55 (m, 2H), 1.44-1.36 (m, 2H), 1.34-1.26 (m, 4H), 1.25 (s, 12H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.2, 151.7, 147.6, 133.6, 128.0, 126.3, 82.9, 62.5, 52.8, 38.6, 34.3, 32.1, 28.8, 28.2, 25.3, 25.2, 22.5, 22.4, 21.8, 14.0; HRMS (ESI): calc. for C₂₇H₄₁BNaO₆ [M+Na]⁺: 495.2893; found: 495.2899.

(Z)-Dimethyl 4-cyclohexylidene-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-1-enyl)cyclopent-2-ene-1,1-dicarboxylate (4f') (less polar)

20% isolated yield, liquid. ¹H NMR (500 MHz, CDCl₃): δ 5.75 (s, 1H), 5.28-5.22 (m, 1H), 3.73 (s, 6H), 3.10 (s, 2H), 2.21-2.16 (m, 2H), 2.15-2.08 (m, 2H), 2.06-1.97 (m, 2H), 1.68-1.61 (m, 2H), 1.60-1.56 (m, 2H), 1.38-1.32 (m, 2H), 1.31-1.22 (m, 4H), 1.13 (s, 12H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 171.4, 152.5, 143.7, 142.9, 125.9, 121.3, 82.8, 63.8, 52.7, 35.1, 31.8, 31.7, 29.5, 29.0, 27.4, 24.6, 22.6, 22.5, 22.1, 14.0; HRMS (ESI): calc. for C₂₇H₄₁BNaO₆ [M+Na]⁺: 495.2893; found: 495.2902.

(E)-2-(1-(4,4-Bis(benzyloxymethyl)-2-(prop-1-en-2-yl)cyclopent-2-enylidene)hexyl)-4, 4,5,5-tetramethyl-1,3,2-dioxaborolane (**4g**)

57% isolated yield, liquid. ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.24 (m, 10H), 5.88 (s, 1H), 4.99 (s, 1H), 4.97 (s, 1H), 4.53 (s, 4H), 3.47 (s, 4H), 2.49 (s, 2H), 2.14 (t, J = 8.0 Hz, 2H), 1.95 (s, 3H), 1.42-1.35 (m, 2H), 1.34-1.28 (m, 4H), 1.28 (s, 12H), 0.90 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 150.9, 149.4, 141.1, 138.9, 136.1, 128.2, 127.4, 127.3, 115.4, 83.1, 73.4, 73.2, 51.4, 37.6, 33.9, 32.1, 29.0, 25.2, 24.0, 22.6, 14.1; HRMS (ESI): calc. for C₃₆H₄₉BNaO₄ [M+Na]⁺: 579.3622; found: 579.3630.

General procedure for oxidative carbocyclization/borylation for the formation of vinylallenes 5

Representative procedure B for the synthesis of 5. Dimethyl 4-(prop-1-enylidene)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-propan-2-yl)cyclopent-2-ene-1,1dicarboxylate (5a)

To a mixture of B₂pin₂ (66.2 mg, 0.26 mmol), BQ (24.0 mg, 0.22 mmol), Pd(OAc)₂ (1.0 mg, 0.004 mmol), and BF₃·Et₂O (6 μ L, 0.04 mmol) were added **1a** (52.7 mg, 0.20 mmol) and 1.0 mL of THF at rt. The reaction was stirred at 50 °C for 20 h. After the reaction was complete as monitored by TLC, evaporation and column chromatography on silica gel (pentane/ethyl acetate = 10/1) afforded **5a** (59.6 mg, 77%) as a liquid; ¹H NMR (400 MHz, CDCl₃): δ 5.55 (d, *J* = 1.6 Hz, 1H), 5.34-5.23 (m, 1H), 3.716 (s, 3H), 3.715 (s, 3H), 3.19-3.17 (m, 2H), 1.68 (d, *J* = 7.2 Hz, 3H), 1.18 (s, 12H), 1.17 (s, 3H), 1.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 171.5, 171.3, 153.8, 122.9, 107.1, 91.2, 83.1, 63.5, 52.7, 36.5, 25.0, 24.7, 24.5, 23.9, 23.8, 14.8; HRMS (ESI): calc. for C₂₁H₃₁BNaO₆ [M+Na]⁺: 413.2106; found: 413.2103.

Dimethyl 3-(2'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2'-yl)-4-vinylidenecyclopent-2-ene-1,1-dicarboxylate (**5b**)

73% isolated yield, liquid. ¹H NMR (500 MHz, CDCl₃): δ 5.57 (t, J = 1.5 Hz, 1H), 5.02 (t, J = 4.0 Hz, 1H), 5.01 (t, J = 4.0 Hz, 1H), 3.74 (s, 6H), 3.25 (t, J = 4.0 Hz, 2H), 1.20 (s, 12H), 1.19 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 203.1, 171.2, 153.2, 123.0, 107.4, 83.2, 81.0, 63.7, 52.8, 36.4, 24.6, 23.9; HRMS (ESI): calc. for C₂₀H₂₉BNaO₆ [M+Na]⁺: 399.1949; found: 399.1952. *Dimethyl* 3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl)-4-vinylidenecyclopent-2-ene-1,1-dicarboxylate (**5***c*)

56% isolated yield, liquid. ¹H NMR (400 MHz, CDCl₃): δ 5.58 (s, 1H), 5.04-4.94 (m, 2H), 3.73 (s, 3H), 3.71 (s, 3H), 3.25 (dt, $J_I = 16.0$ Hz, $J_2 = 4.0$ Hz, 1H), 3.18 (dt, $J_I = 16.0$ Hz, $J_2 = 4.0$ Hz, 1H), 1.83-1.73 (m, 1H), 1.64-1.54 (m, 1H), 1.192 (s, 6H), 1.188 (s, 6H), 1.14 (s, 3H), 0.74 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 203.0, 171.3, 171.1, 151.1, 124.8, 107.2, 83.1, 80.8, 63.7, 52.7, 36.5, 28.1, 24.7, 24.6, 19.6, 8.6; HRMS (ESI): calc. for C₂₁H₃₁BNaO₆ [M+Na]⁺: 413.2106; found: 413.2112.

Dimethyl 4-(*hex-1-enylidene*)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl)cyclopent-2-ene-1,1-dicarboxylate (**5d**)

79% isolated yield, liquid. ¹H NMR (400 MHz, CDCl₃): δ 5.55 (d, J = 1.6 Hz, 1H), 5.32-5.25 (m, 1H), 3.71 (s, 6H), 3.21 (dd, $J_I = 16.0$ Hz, $J_2 = 3.6$ Hz, 1H), 3.14 (dd, $J_I = 16.0$ Hz, $J_2 = 3.6$ Hz, 1H), 2.09-2.01 (m, 2H), 1.42-1.28 (m, 4H), 1.18 (s, 9H), 1.17 (s, 6H), 1.13 (s, 3H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.0, 171.5, 171.3, 153.9, 122.9, 107.5, 96.6, 83.1, 63.5, 52.7, 36.8, 31.1, 29.2, 24.7, 24.5, 24.0, 23.8, 22.2, 13.8; HRMS (ESI): calc. for C₂₄H₃₇BNaO₆ [M+Na]⁺: 455.2580; found: 455.2582.

 $[D_6]-Dimethyl \qquad 4-(hex-1-enylidene)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-propan-2-yl)cyclopent-2-ene-1,1-dicarboxylate ([D_6]-5d)$

54% isolated yield (Scheme 3c), liquid. ¹H NMR (500 MHz, CDCl₃): δ 5.56 (s, 1H), 5.32-5.26 (m, 1H), 3.73 (s, 6H), 3.23 (dd, J_1 = 16.0 Hz, J_2 = 3.5 Hz, 1H), 3.15 (dd, J_1 = 16.0 Hz, J_2 = 3.5 Hz, 1H), 2.09-2.01 (m, 2H), 1.42-1.28 (m, 4H), 1.19 (s, 6H), 1.18 (s, 6H), 0.89 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 198.0, 171.6, 171.3, 153.9, 122.8, 107.5, 96.6, 83.1, 63.5, 52.7, 36.9, 31.1, 29.3, 24.8, 24.5, 22.2, 13.9; HRMS (ESI): calc. for C₂₄H₃₁BD₆NaO₆ [M+Na]⁺: 461.2956; found: 461.2951.

Dimethyl 4-(*hex-1-enylidene*)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl)cyclopent-2-ene-1,1-dicarboxylate (**5e**)

77% isolated yield, liquid. ¹H NMR (400 MHz, CDCl₃): δ 5.61-5.55 (m, 1H), 5.32-5.22 (m, 1H), 3.72-3.68 (m, 6H), 3.25-3.06 (m, 2H), 2.09-1.96 (m, 2H), 1.88-1.76 (m, 0.5H), 1.72-1.62 (m, 1H), 1.51-1.41 (m, 0.5H), 1.40-1.41 (m, 4H), 1.22-1.10 (m, 15H), 0.91-0.82 (m, 3H), 0.81 (t, *J* = 7.2 Hz, 1.5H), 0.66 (t, *J* = 7.2 Hz, 1.5H); ¹³C NMR (100 MHz, CDCl₃): δ 198.0, 197.9, 171.5, 171.4, 171.3, 171.2, 152.2, 151.4, 125.0, 124.4, 107.5, 107.2, 96.4, 96.1, 83.1, 83.0, 63.5, 63.4, 52.6, 37.0, 36.9, 31.1, 30.8, 29.2, 29.1, 29.0, 27.4, 25.0, 24.9, 24.7, 24.6, 24.4, 22.2, 20.2, 19.4, 13.8, 9.5, 8.0; HRMS (ESI): calc. for C₂₅H₃₉BNaO₆ [M+Na]⁺: 469.2732; found: 469.2728.

Dimethyl 4-(hex-1-enylidene)-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohexyl)cyclopent-2-ene-1,1-dicarboxylate (**5***f*)

70% isolated yield, liquid. ¹H NMR (400 MHz, CDCl₃): δ 5.59 (d, J = 1.2 Hz, 1H), 5.30-5.22 (m, 1H), 3.714 (s, 3H), 3.705 (s, 3H), 3.16 (dd, $J_I = 16.0$ Hz, $J_2 = 3.6$ Hz, 1H), 3.09 (dd, $J_I = 16.0$ Hz, $J_2 = 3.6$ Hz, 1H), 2.19-2.01 (m, 4H), 1.70-1.61 (m, 1H), 1.60-1.45 (m, 3H), 1.44-1.25 (m, 8H), 1.19 (s, 6H), 1.18 (s, 6H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.5, 171.5, 171.2, 151.8, 124.2, 106.6, 95.8, 83.1, 63.3, 52.6, 37.2, 32.8, 32.6, 31.0, 29.1, 26.4, 25.0, 24.71, 24.66, 24.5, 24.4, 22.1, 13.9; HRMS (ESI): calc. for C₂₇H₄₁BNaO₆ [M+Na]⁺: 495.2888; found: 495.2877.

2-(2-(3,3-Bis(benzyloxymethyl)-5-(hex-1-enylidene)cyclopent-1-enyl)propan-2-yl)-4,4 ,5,5-tetramethyl-1,3,2-dioxaborolane (**5g**)

37% isolated yield, liquid. ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.24 (m, 10H), 5.51 (d, J = 1.5 Hz, 1H), 5.25-5.20 (m, 1H), 4.55 (s, 4H), 3.53-3.42 (m, 4H), 2.54-2.42 (m, 2H), 2.09-2.01 (m, 2H), 1.44-1.30 (m, 4H), 1.21 (s, 6H), 1.20 (s, 6H), 1.18 (s, 3H), 1.14 (s, 3H), 0.91 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 198.3, 151.0, 139.1, 139.0, 129.2, 128.2, 127.34, 127.29, 127.21, 127.19, 108.9, 95.2, 82.9, 73.8, 73.7, 73.2, 52.0, 37.0, 31.3, 29.5, 24.8, 24.5, 24.1, 24.0, 22.2, 13.9; HRMS (ESI): calc. for C₃₆H₄₉BNaO₄ [M+Na]⁺: 579.3622; found: 579.3623.

Explanation for the formation of 4f' from 4f.

Scheme S1

Application:^{3a}

Dimethyl 4-(*hex-1-enylidene*)-3-(2-*hydroxypropan-2-yl*)*cyclopent-2-ene-1*,1-*dicarboxylate* (**6**)^{3c}

To a solution of **5d** (367.7 mg, 0.85 mmol) in THF (17 mL) were added H₂O₂ (0.48 mL, 30% in H₂O, 4.25 mmol), NaOH aqueous solution (0.85 mL, 3M, 2.55 mmol) sequentially at rt for 1 h. When the reaction was complete as monitored by TLC, the mixture was diluted with Et₂O (20 mL) and H₂O (10 mL). The organic layer was separated and the aqueous layer was extracted with diethyl ether (2 x 20 mL). The combined organic layers were dried over Na₂SO₄. Concentration and column chromatography on silica gel (pentane/ethyl acetate = 3:1) afforded **6** (232.1 mg, 85%): liquid; ¹H NMR (500 MHz, CDCl₃): 5.84 (s, 1H), 5.50-5.41 (m, 1H), 3.75 (s, 3H), 3.74 (s, 3H), 3.30-3.20 (m, 2H), 2.14 (s, 1H), 2.13-2.02 (m, 2H), 1.43 (s, 6H), 1.42-1.30 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H).

Kinetic Isotope Effect (KIE) Experiments

1. Determination of Intermolecular Competition KIE of the triene formation.

To a mixture of B₂pin₂ (66.0 mg, 0.26 mmol), BQ (24.0 mg, 0.22 mmol), Pd(OAc)₂ (0.9 mg, 0.004 mmol), and LiOAc·2H₂O (4.1 mg, 0.04 mmol) were added **1a** (30.6 mg, 0.10 mmol), 0.5 mL of DCE, [D₂]-**1a** (30.8 mg, 0.10 mmol), and 0.5 mL of DCE sequentially in a vial at rt. Then the reaction was stirred at 50 °C for 1 h, quenched with Et₂O (5 mL), and concentrated under reduced pressure. The yields of **4d** and [D₅]-**4d** were analyzed by ¹H NMR measurement using anisole as the internal standard (11 μ L, 0.1 mmol) and the ratio of **4d**/[D₅]-**4d** was analyzed by HRMS and determined by comparing the abundance of the corresponding [M+Na] and [M+5+Na] peaks (assuming **4d** and [D₅]-**4d** have similar ionization pattern).

Table S1.

	1st	2nd	average
Abundance of 4d	173744	102314	
Abundance of [D ₅]-4d	27420	14671	
Abundance of 1d in the end of the reaction	625356	441152	
Abundance of $[D_6]$ -1d in the end of the reaction	624172	456367	
The ratio $(1d/[D_6]-1d)$ in the end of the reaction	1.00	0.97	
KIE	6.34	6.97	6.66

2. Determination of Intermolecular Competition KIE of the vinylallene formation.

To a mixture of B_2pin_2 (66.0 mg, 0.26 mmol), BQ (24.0 mg, 0.22 mmol), Pd(OAc)₂ (0.9 mg, 0.004 mmol), and BF₃·Et₂O (6 µL, 0.04 mmol) were added **1a** (30.6 mg, 0.10 mmol), 0.5 mL of THF, [D₂]-**1a** (30.8 mg, 0.10 mmol), and 0.5 mL of THF sequentially in a vial at rt. Then the reaction was stirred at 50 °C for 1 h, quenched with Et₂O (5 mL), and concentrated under reduced pressure. The yields and the ratio of **5d** and [D₁]-**5d** were analyzed by ¹H NMR measurement using anisole as the internal standard (11 µL, 0.1 mmol).

Table S2.

	1st	2nd	3rd	4th	average
Yield of 5d (%)	7.4	9.6	9.9	9.8	
Total yields of $5d+[D_1]-5d$ (%)	10.5	15.0	12.9	13.6	13.0
Yield of $[D_1]$ -5d (%) (from calculation)	3.1	5.4	3.0	3.8	
Conversion (%)	26	37	33	30	31.5
Ratio between $5d/[D_1]-5d$	2.39	1.78	3.30	2.58	2.43
The estimated ratio ([D ₂]-1d/1d) in the end of the reaction	1.12	1.14	1.23	1.09	1.15
KIE	2.53	1.90	3.66	2.81	2.73

Since the ratio of the starting material continuously changes during the reaction, the isotope effect is obtained after a slight correction of this factor. Taking the experiment 1 for example, the ratio $(1d/[D_2]-1d)$ in the end of the reaction was estimated to be 1:1.12. The yield of $(5d + [D_1]-5d)$ was 10.5% at a 26% conversion. Here, we assume the 15.5% (26%-10.5%) of the starting materials were converted to by-products without any isotope effect. Then the remaining 1d should be 50%-(15.5%/2)-7.4% = 34.8% and the remaining $[D_2]$ -1a should be 50%-(15.5%/2)-3.1% = 39.1%, respectively. Therefore, the isotope effect calculated from the product ratio and the

change of the starting material ratio is approximately 2.53 (namely, 2.39*[(1+1.12)/2]).

3. Determination of Intramolecular KIE of the vinylallene formation.

To a mixture of B_2pin_2 (66.0 mg, 0.26 mmol), BQ (24.0 mg, 0.22 mmol), Pd(OAc)₂ (0.9 mg, 0.004 mmol), and BF₃·Et₂O (6 µL, 0.04 mmol) were added [D₁]-1d (61.4 mg, 0.20 mmol) and 1.0 mL of THF sequentially in a vial at rt. Then the reaction was stirred at 50 °C for 20 h, quenched with Et₂O (5 mL), and concentrated under reduced pressure. The yields and the ratio of 5d and [D₁]-5d were analyzed by ¹H NMR measurement using anisole as the internal standard (22 µL, 0.2 mmol).

Table	S3.
-------	-----

		1st	2nd	3rd	average
	Yield of 5d (%)	12	11	9	
	Yield of $[D_1]$ -5d (%)	54	55	57	
	Total yields (%)	66	66	66	66
	KIE	4.50	5.00	6.33	5.28
7.260	5.543 5.305 5.305 5.305 5.297 5.297 5.297 5.275 5.275	3.187	2.053 2.034 2.016 2.016	1.389 1.372 1.351 1.176 1.163	0.857
1	$ \begin{array}{c} nBu \\ E \\ E \\ Bpin \\ 0.16 \\ \vdots \\ 0.84 \\ \end{array} $	U	A		
.5 7.0		3.5 3.0 2	.5 2.0	1.5 1.0 <u>3.07</u> <u>3.24</u> <u>3.24</u> <u>3.24</u> <u>3.24</u> <u>3.24</u> <u>3.24</u> <u>3.24</u> <u>3.24</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u> <u>3.07</u>	0.5 ppm

4. Effect of isotope substitution at the alkyne part on product distribution.

To a mixture of B_2pin_2 (33.0 mg, 0.13 mmol), BQ (12.0 mg, 0.11 mmol), and $Pd(OAc)_2$ (0.5 mg, 0.002 mmol) were added [D₂]-1d (30.8 mg, 0.10 mmol) and 0.5 mL of DCE sequentially in a vial at rt. Then the reaction was stirred at 50 °C for 15 h, quenched with Et₂O (2.5 mL), and concentrated under reduced pressure. The yields and the ratio of [D₂]-4d and [D₁]-5d were analyzed by ¹H NMR measurement using anisole as the internal standard (11 µL, 0.1 mmol).

Table	S4.
-------	-----

	1st	2nd	average
Yield of [D ₂]-4d (%)	73	75	74
Yield of [D ₁]-5d (%)	6	6	6
Ratio [D ₂]-4d/[D ₁]-5d			12.3/1

5. Effect of isotope substitution at allene part on product distribution.

To a mixture of B_2pin_2 (33.0 mg, 0.13 mmol), BQ (12.0 mg, 0.11 mmol), and $Pd(OAc)_2$ (1.2 mg, 0.005 mmol) were added [D₆]-1d (31.2 mg, 0.10 mmol) and 0.5 mL of DCE sequentially in a vial at rt. Then the reaction was stirred at 50 °C for 15 h, quenched with Et₂O (2.5 mL), and concentrated under reduced pressure. The yields and the ratio of [D₅]-4d and [D₆]-5d were analyzed by ¹H NMR measurement using anisole as the internal standard (11 μ L, 0.1 mmol).

The product ratio for this experiment was obtained from the integration of the overlapping CH_2 signals at ca. 3.20 ppm. To enhance accuracy of the integration, the ratio was determined as the average of two methods of integrating the signal, which led to $[D_5]$ -4d/ $[D_6]$ -5d is 1/5.0, and the ¹H NMR yield is 12% and 60%, respectively.

Alternative mechanism to that proposed in Scheme 5 for oxidative carbocyclization/borylation of allenyne 1

A mechanism involving a pallada(IV)cyclopentene intermediate **F** is also possible, which would generate intermediates **C** and **E** selectively via β -H elimination and subsequent loss of HOAc leading to products **4** and **5**, respectively.

Scheme S2. Proposed alternative mechanism for palladium-catalyzed oxidative selective carbocyclization/borylation of allenynes **1**.

References:

- a) D. K. Black, S. R. Landor, A. N. Patel, P. F. Whiter, *Tetrahedron Lett*, **1963**, *4*, 483; b) A. K. Å. Persson, E. V. Johnston, J.-E. Bäckvall, Org. Lett. **2009**, *11*, 3814.
- 2. C. Sperger, L. H. S. Strand, A. Fiksdahl, Tetrahedron 2010, 66, 7749.
- 3. a) V. Pardo-Rodríguez, J. Marco-Martínez, E. Buñuel, D. J. Cárdenas, *Org. Lett.*2009, *11*, 4548; b) Y. Deng, T. Bartholomeyzik, A. K. Å. Persson, J. Sun, J.-E.
 Bäckvall, *Angew. Chem.* 2012, *124*, 2757; *Angew. Chem. Int. Ed.* 2012, *51*, 2703;
 c) Y. Deng, J.-E. Bäckvall, *Angew. Chem. Int. Ed.* 2013, DOI: 10.1002/anie.201208718.

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

E:\Data2\Youqian\dyq-4-155000001.d Tune_wide_pos.m dyq-4-155

Acquisition Date 2012-11-13 14:42:51

Operator Carin Larsson Instrument / Ser# micrOTOF 125

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

E:\Data2\Youqian\Teb-c-45000001.d Tune_wide_pos.m Teb-c-45

Acquisition Date 2012-11-16 18:00:56

Operator Carin Larsson Instrument / Ser# micrOTOF 125

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Focus	Not active			Set Dry Heater	180 °C
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	4.0 l/min
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

E:\Data2\Youqian\dyq-4-158-1000003.d Tune_wide_pos.m dyq-4-158-1

Acquisition Date 2012-11-13 19:03:54

Operator Carin Larsson Instrument / Ser# micrOTOF 125

Analysis Info

Analysis Name Method Sample Name Comment

E:\Data2\Youqian\dyq-4-18200001.d Tune_low_pos.m dyq-4-182

Acquisition Date 2012-12-07 18:28:51

Operator Carin Larsson Instrument / Ser# micrOTOF

125

Acquisition Parameter Source Type ESI Ion Polarity Positive Set Nebulizer 0.4 Bar Set Dry Heater Set Dry Gas Focus Not active 180 °C Scan Begin 50 m/z 4000 V Set Capillary 4.0 l/min Set End Plate Offset Scan End 1000 m/z -500 V Set Divert Valve Source Intens. +MS, 38.3-43.4s #(38-43) x10⁶-1.0

Analysis Info

Analysis Name Method Sample Name Comment

E:\Data2\Youqian\dyq-4-163-1000001.d

Tune_wide_pos.m

dyq-4-163-1

Acquisition Date 2012-11-17 14:45:16

Operator Carin Larsson Instrument / Ser# micrOTOF

125

Analysis Info

Analysis Name Method Sample Name Comment

E:\Data2\Youqian\dyq-4-162-1000001.d Tune_wide_pos.m dyq-4-162-1

Acquisition Date 2012-11-16 14:00:49

Operator Carin Larsson Instrument / Ser# micrOTOF 125

Acquisition Parameter 0.3 Bar 180 °C Source Type ESI Ion Polarity Positive Set Nebulizer Focus Not active Set Dry Heater 50 m/z 3000 m/z 4500 V Set Capillary Scan Begin Set Dry Gas 4.0 l/min Set End Plate Offset Scan End -500 V Set Divert Valve Source

Bruker Compass DataAnalysis 4.0

Analysis Info

Analysis Name Method Sample Name Comment

E:\Data2\Youqian\dyq-4-162-2000001.d Tune_wide_pos.m dyq-4-162-2

Acquisition Date 2012-11-16 14:06:58

Operator Carin Larsson Instrument / Ser# micrOTOF 125

Acquisition Parameter Source Type ESI Ion Polarity Positive Set Nebulizer 0.3 Bar Set Dry Heater Set Dry Gas 180 °C 4.0 l/min Focus Not active Scan Begin 50 m/z Set Capillary 4500 V 3000 m/z Set End Plate Offset Scan End -500 V Set Divert Valve Source

Analysis Info

Analysis Name Method Sample Name Comment

E:\Data2\Youqian\Teb-c-59000001.d Tune_low_pos.m Teb-c-59

Acquisition Date 2012-12-13 15:42:26

Operator Carin Larsson Instrument / Ser# micrOTOF 125

Analysis Info

Analysis Name Method Sample Name Comment

e H:\Data2\Youqian\dyq-4-59000001.d tune_wide_dirk.m

Acquisition Date 2012-08-15 14:35:56

Operator pia Instrument / Ser# micrOTOF 125

Acquisition Parameter Source Type ESI Ion Polarity Positive Set Nebulizer Set Dry Heater 0.4 Bar Focus Not active 180 °C Scan Begin 50 m/z 4500 V Set Capillary Set Dry Gas 4.0 l/min Scan End 3000 m/z Set End Plate Offset -500 V Set Divert Valve Source

E Bpin

Analysis Info

Analysis Name	H:\Data2\Youqian\dyq-3-33-2000001.d
Method	tune_wide_dirk.m
Sample Name	dyq-3-33-2
Comment	

Acquisition Date 2011-12-07 11:36:40

Operator pia Instrument / Ser# micrOTOF 125

Acquisition Parameter

Source Type Focus	ESI Not active	lon Polarity	Positive	Set Nebulizer Set Dry Heater	0.4 Bar
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	4.0 l/min
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source

Formula	Meas. m/z	m/z	err [ppm]	Mean err [ppm]	
C 20 H 29 B Na O 6	335.1502	399.1949	-0.6	4.7	
					C 20 H 29 B Na O 6 ,399.20
		399.1953			
		Λ			
	398	3.1986 400. ⁻	1983		
		/ / / /	401.2016		

Formula Meas. m/z m/z err [ppm] Mean err [ppm]

Analysis Info

Analysis Name Method Sample Name Comment

e H:\Data2\Youqian\dyq-3-179000001.d tune_wide_dirk.m dyq-3-179

Acquisition Date 2012-04-30 10:37:06

Operator pia Instrument / Ser# micrOTOF 125

Acquisition Parameter

Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulizer Set Dry Heater	0.4 Bar	
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	4.0 l/min	
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source	

Formula	Meas. m/z 413.2112	m/z	err [ppm]	Mean err [ppm]
C 21 H 31 B Na O 6		413.2106	-1.4	1.4

Bpin 5c Et

į.

Acquisition Date

Operator

2012-04-26 18:08:48

125

pia

Instrument / Ser# micrOTOF

Analysis Info

Analysis Name H:\Data2\Youqian\dyq-3-167000002.d Method tune_wide_dirk.m Sample Name dyq-3-167 Comment

Acquisition Parameter

nBu E 5d Bpin

Analysis Info

Analysis Name Method Sample Name Comment

E:\Data2\Youqian\dyq-4-185000001.d Tune_low_pos.m dyq-4-185

Acquisition Date 2012-12-07 18:34:02

Operator Carin Larsson Instrument / Ser# micrOTOF 125

nBu E Bpin ℃D3 D₃C [D₆]-**5d**

Bruker Compass DataAnalysis 4.0

Analysis Info

Analysis Name Method Sample Name Comment

Acquisition Parameter

H:\Data2\Youqian\dyq-4-1000002.d

tune_wide_dirk.m

dyq-4-10

Source Type	FSI	Ion Polarity	Positivo	Sof Natur		
Focus	Not active	ion rolanty	i Ositive	Set Dry Heater	0.4 Bar 180 °C	
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	4.0 l/min	
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source	

*n*Bu F Bpin 5e Èt dr = 1/1

Acquisition Date 2012-05-28 17:22:21

Operator pia Instrument / Ser# micrOTOF 125

Analysis Info

Analysis Name Method Sample Name Comment

H:\Data2\Youqian\dyq-3-171000001.d tune_wide_dirk.m dyq-3-171

Acquisition Date 2012-04-27 18:34:57

Operator pia Instrument / Ser# micrOTOF 125

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name Comment

E:\Data2\Youqian\Teb-c-61000001.d Tune low pos.m Teb-c-61

Acquisition Date 2012-12-13 15:47:51

Operator Carin Larsson Instrument / Ser# micrOTOF 125

0.3

Acquisition Parameter Source Type ESI Ion Polarity Positive 0.4 Bar 180 °C Set Nebulizer Not active Focus Set Dry Heater Scan Begin 50 m/z Set Capillary 4000 V Set Dry Gas 4.0 l/min Scan End 1000 m/z Set End Plate Offset -500 V Set Divert Valve Source Intens. +MS, 61.4-64.4s #(61-64) x10⁶ 5-4 3 2 1 579.3623 0 100 200 300 400 500 600 700 800 900 m/z

Formula Meas. m/z m/z err [ppm] Mean err [ppm] C 36 H 49 B Na O 4 579.3623 579.3622 -0.1

