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Supporting Material

1. Estimate of Electrostatic Force of Repulsion Between a Synaptic Vesicle
and a Plasma Membrane

To calculate this force, we considered two polarized planes (the vesicle and the membrane)
carrying different surface potentials and separated by a distance (). We modeled the
electrostatic potential (¢) along the coordinate (x) which connects the vesicle and the
membrane, which can range between 0 and a. The electrostatic potential was calculated using the
Debye-Huckel equation, which is a linearized version of the nonlinear Poisson-Boltzmann
equation [40, 41]:
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€ is the dielectric constant of water, €, is the permittivity of free space, g is the charge of an

electron, z is the unsigned valence of each of the two ions, ¢, is the concentration of the ions, 7 is
temperature, and &z is Boltzmann’s constant. The solution of the equation (1) is:

where [, is the Debye screening length:

@(x) = A cosh (i) + B sinh(%) (2)

To calculate the electrostatic force between the vesicle and the membrane based on Eq. (2), we
need to make an assumption about the relationship between the surface potential and surface
charge. We have considered two limiting cases:

1. Surface potential is fixed and surface charge adjusts to keep it at a constant level. The surface
charge could adjust to compensate for the potential change either via redistribution of ions,
such as K, in the vicinity of the membrane, or via polar lipid groups adjusting their degree
of ionization. Both mechanisms would work to minimize the change in the surface potential.

1. Surface charge is fixed and surface potential adjusts. This is the limiting case corresponding
to fully ionized groups with a fixed charge.

Fixed Potential

In this case the equation [1] is subject to boundary conditions
a. @ =¢ (x=0),

b. ¢=0¢, (x=a). (3)



where (x=0) corresponds to surface ‘1’ and (x=a) corresponds to surface ‘2’. Surface potential
on both the vesicle and plasma membrane surface are negative and, without loss of generality,
we let @, < ¢, so that 2’ corresponds to the plasma membrane (see Table 1).

Applying the boundary conditions, we find

A=¢
a

B = [(pz - ¢ cosh( )] / sinh(E
Ip Ip

So that

9(x) = @1 cosh () + [z — @ cosh ()| sinh()/ sinh()

Table 1. Parameters used for calculations of the electrostatic repulsion

(4)

Parameter Value Reference Comment

1 Surface Potential of Vesicle, ¢; | -25 mV [3]

2 Surface Potential of Membrane | -70 mV [4]

)

3 Permittivity &, 8.85x 10 F/m Sl units

4 Dielectric constant of water ¢ 80 Dimensionless

5 Salt concentration 200 mM (1-1 Electrolyte)

6 Debye Screening Length, I, 0.67 nm [5]

lp =

7 Surface Charge of Vesicle g; -0.0125 C/m? [3]

8 | Surface Charge of Vesicle g;,0, | -0.025, -0.07 [3] o = €€oP1
estimated using assumed C/m2 ! Iy
surface potential, ¢4

9 Separation between vesicle and | 1 nm
plasma membrane when
SNAREs hold them together

10 | Vesicle diameter 45 nm [3]

Given the potential, we calculate the force per unit area between the two flat planes using the

result [1]

_ d_w)z ceo 97
f= 2 (dx +3 13 (3)

which yields,



f = s (20102 cosh () — 02 - ¢3) (6)
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The interaction energy between the two planes is calculated as

F=-Yk_ % raq (7)
which gives
E =52 (20202 /sinh (1) = (9F + o) (coth (i) - 1)) (8)

. o . l . .
Figure S1 plots the normalized interaction energy, :E”jz as a function of a /[, for different
0 %1

values of @, /¢;.
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Figure S1. Interaction energy between two planes of charge as a function of ratio of potentials.

This shows some interesting peculiarities. Firstly, even for the same surface potential on both
sides, the interaction energy (repulsive) remains bounded even for zero separation. This is

because the surface charge reduces in magnitude to keep the surface potential fixed. In fact, at

zero separation the surface charge density goes to zero just as the repulsion (for fixed charge)
would be going to infinity and the two effects cancel out leaving a finite force. Secondly, for
unequal surface potential, there is a maximum in the interaction energy and this maximum is

independent of the larger surface potential. 1t depends only on the value of the smaller surface

potential. It is given by a very simple expression (energy per unit area)



2
Emax = P10 (9)

Ip

This is the interaction energy between two flat planes. We use Derjaguin’s approximation [2],
which relates the energy between two flat planes to the force of interaction between a
spherical surface and a plane, which is what we need:

2
Frax = 2R Epay = 2mR, 222 (10)

Ip

Fixed Charge

Let us now consider the case where surface charge is held fixed. In this case, the boundary
conditions are:

—6602—;’; =0, (x=0); eeo‘;—f =g, (x=a). (11)

Applying the boundary conditions, we obtain®

[0 cosh L)+o 1 cosh(i)
o(x) = ! (’D) 2P ‘" _ il sinh(li) (12)
D

€€y sinh(%) €€g

where g; and g, are the surface charge densities on the two surfaces. The force per unit area
is again calculated using equation (6), which gives us

02+02+2040, cosh(%)

f= (13)

2€€psinh? (%)

The interaction energy is again calculated using equation (7) and gives us

E = -2(20,0, /sinh (%) + (62 + o2)(coth (%) - 1) (14)

2€€q
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Figure S2 Interaction energy between two charged planes as a function of the ratio of surface
charges

Replacing surface charge densities in equation (14) by surface potential at infinite separation,

2IpE
2
1

Figure S2 plots the normalized interaction energy, as a function of a/l, for different

€€Q @
values of @, /@, w. Now we find that there is always repulsion and it diverges as the two
surfaces are brought together. The force is again given by equation (10), i.e.,

F = 2mRE = "‘:Z:D (20,0, /sinh (%) + (62 + 02)(coth (%) -1) (@)

To estimate the force, we assume a separation of about 1 nm and use other parameters given
in Table 1.

Notably, the difference between the fixed potential and fixed charge calculations is significant
only when the vesicle and membrane are within about a Debye length. For longer separations,

the two converge. In fact, equations (8) and (14) for the energy of interaction both converge to
a much simpler formula for large separations:

= % _a
E=="¢:10 eXp( lD) (16)

and the force between the vesicle and membrane is given by
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F= P192 Ry exp (— —) (17)

Equation (17) is plotted in Figure S3.
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Figure S3. Distance dependence of the force produced by electrostatic repulsion between the
vesicle and the membrane.
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2. Relaxation of the partially unzipped SNARE complex
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Figure S4. The SNARE conformation with layer 6 being separated from the rest of the SNARE
bundle relaxes to the state with zippered layer 6 within 5 ns. Three lines (black, red, and green)
correspond to three different runs. The separation of layer 6 was measured as a distance between
Ca atoms of the residues F77 of Syb and A247 of Syx.
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Figure S5. Holding force of 0.5-1 kgT accelerates SNARE zippering
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Figure S6. Relaxation of the SNARE complex without (A-D) or with (E-H) Cpx. Three independent
runs are marked with different colors (black, red, green). Intermediate states (2-4, A, E)
correspond to the trajectory points where the separation between Syb and Syx C-terminal
residues diminishes (marked by arrows in B and F). Insets (B.C) show rapid decrease in the
distance within the initial 3 ns.



