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Supporting Material 

DNA Translocation without Pore Wall Surface Charges 

Previous studies showed that the negative nanopore wall surface charges were able to decrease 
the DNA translocation speed significantly through the induced cationic EOF within the pore 
[1,2,3]. That is, contribution to the tuning of DNA velocity by item (2) shown in Fig.1 is 
prominent. Nonetheless, in this work the regulation of DNA translocation by salt-gradient-
induced EOF is the central topic as depicted by item (3) of Fig.1. Therefore, first we neglect the 
influence of nanopore wall surface charges so that the variation of polymer motion by salt-
gradient effect can be singled out. Mathematically, this is done by manually setting σw = 0 in 
Eq.10 and then solving those coupled equations. 

 

Fig.S1 (a) The 2-dimensional fluid velocity field u in the open-pore system under Cc/Ct  = 0.2 M / 1 M. 
Here D = 8 nm while other parameters remain the same as in Fig.2, and the influence of nanopore wall 

surface charges has been neglected. (b) z-component fluid velocity uz along nanopore axial direction in the 
open-pore under various salt gradients: Ct is fixed at 1 M, while Cc is tuned from 1 M (magenta line) to 0.8 

M (olive line) to 0.4 M (blue line) to 0.2 M (red line) and to 0.1 M (black line). 

The calculated velocity field u(r,z) of EOF across the open pore under salt gradient Cc/Ct = 0.2 
M/1.0 M is plotted in Fig.S1a. The variation of fluid velocity field with the imposed salt gradient 
is further demonstrated in Fig.S1b, where z-component fluid velocity along nanopore axial 
direction uz(z) is plotted as a function of the salt gradient Cc/Ct. It reveals that the average speed 
of EOF is about several tens of μm/ms within the nanopore. On the other hand, Fig.S2 shows the 
DNA translocation velocity uDNA under homogeneous salt concentration where the contribution 



by wall surface charges is also neglected. The molecule velocity is about hundreds of μm/ms. 
Thus we conclude that velocity of EOF in the open nanopore generated by the imposed salt 
gradient can reach 10% of that of DNA in the nanopore in the absence of salt gradient. The fact 
indicates that EOF caused by item (3) will retard the DNA penetrating motion obviously. 

 

Fig.S2: DNA translocation velocity uDNA as a function of homogeneous salt concentration Ct = Cc = C. Here 
nanopore wall surface charge density σw = 0. Inset plots distribution of fluid velocity uz(r) along nanopore 
radial direction under various salt concentration C = 0.1 M (blue line), 0.5 M (green line) and 1.0 M (red 

line). 

This is quantitatively verified by Fig.S3 where the DNA translocation velocity uz is plotted as a 
function of the imposed salt gradient. Comparing to DNA speed under homogenous salt 
concentration shown in Fig.S2, there can be up to 3% of uDNA reduction (the point where 0.6 =̅ܥ 
M, Cc = 0.2 M and Ct = 1 M) when salt gradient is introduced. However, there are two obvious 
disagreements when compared with the experimental data [4]: 

1) The calculated uDNA is one order larger than that observed experimentally. 

2) uDNA shows increasing behavior under larger salt gradient (Cc/Ct → 0), which is in 
contrary to the experimental trend (Fig.9, Supplementary Information of Ref.[4]). 



 

Fig.S3: DNA translocation velocity uDNA as a function of salt gradient Cc /Ct. Here Ct is fixed at 1 M, while 
Cc varies from 1 M to 0.2 M. The influence of nanopore wall surface charges has been neglected. The 

upper axis plots the approximated average salt concentration C = Ct+Cc/2 within nanopore. Insets 
demonstrate distribution of fluid velocity uz along the pore radial direction r: the lower left plots uz(r) near 

the surface of pore wall (D = 8 nm); the upper right plots that near the polynucleotide surface (RDNA = 1 
nm). Blue line stands for Cc = 0.2 M, green line for Cc = 0.6 M and red line for Cc = 1.0 M. 

Both of the quantitative disagreements, the overestimated DNA translocation speed and the 
increasing molecule translocation speed with salt gradient, can be attributed to the negligence of 
SiN wall surface charges. The first: according to our previous study (Fig.3, Ref.3) without 
considering the retarding effect by σw-induced EOF, DNA speed uDNA would be 1 or 2 orders of 
magnitude larger than the real case. The second: as shown in Fig.S1b and Fig.S2, for decreasing 
salt concentration Cc in the cis chamber while fixed Ct in the trans chamber, the DNA velocity 
keeps raising with the decreasing average salt concentration C; velocity of cationic EOF is also 
increasing since the salt gradient is increasing; however the increasing magnitude of the former is 
one order larger than that of latter; consequently, the retarding effect by the latter is overwhelmed. 
Here we remind that the growing of DNA velocity under smaller salt concentration is caused by 
the smaller net charge concentration in the nanopore and thus smaller dragging force by EOF 
(Fig.5, Ref.3). 

Self-adapted Modulation of hydrodynamic Pressure డ௨డ௭ = 0  in Eq.(6) is a requirement of liquid conservation law. It implies that the total driving 

force on the solvent is invariant along the nanopore axis. The derivation is as follows: 

1) Since 
డ௨డ௭ = 0 , the first term of Eq.(6) can be treated as: 

డడ௭ ቄߟ ଵ డడ ቀݎ డ௨డ ቁቅ =డడ௭ ቄడడ௭ − ቅߩ௭ܧ = 0. That is, ቀడడ௭ −  .ቁ is independent on zߩ௭ܧ

2) Then, we perform integration   /ଶି/ଶݖ݀  on ߟ ଵ డడ ቀݎ డ௨డ ቁ = డడ௭ −  : along the pore axisߩ௭ܧ

and arrive at 



ߟ ଵ డడ ቀݎ డ௨డ ቁ = ܲ|௭ୀି/ଶ௭ୀ/ଶ −  ௗ௭ಽ/మషಽ/మ ாఘ . 

The physical mechanism here is the self-adapted modulation of the hydrodynamic pressure P. డ௨డ௭ = 0 is a requirement of the conservation law. Physically, it indicates that the z-component 

fluid velocity does not change along the nanopore direction. Thus, the total driving force  ቀడడ௭  should be constant along the pore axis. Yet on the other hand, the ionic charge ρe(z)	ቁߩ௭ܧ−

induced electrical driving force Ezρe(z) does vary along the nanopore axis. In order to keep the 
total driving force invariant along the pore axis, the hydrodynamic pressure p(z) performs a self-
adapted change. Below we give the multiphysical calculation of hydrodynamic pressure along the 
nanopore axis: 

 

Fig.S4: the distribution of hydrodynamic pressure P along the nanopore axis. The nanopore sits from z = 
−L/2 = −12.5 nm to z = L/2 = 12.5 nm. The concentrations of KCl are Cc = 100 mM in the cis chamber 

while Ct = 1 M in the trans chamber. 

The above figure indicates that the hydrodynamic pressure does perform a self-adapted change 
along the nanopore axis so that the total driving force on the solvent keeps invariant. 

 

DNA Speed under Slippery Nanopore Wall 

We have performed the study of DNA translocation speed under slip boundary condition. 
Mathematically, it is implemented by setting the second boundary condition of Eq.7 in the main 
context as follows: 

௭|ୀோݑ = −ܾ ݎ௭߲ݑ߲ ฬୀோ 

where b is slip length. b≈4 nm is suggested by Hatlo et al, and is used in our numerical simulation 
(Here we remind that there lacks a minus sign in Eq.(8) of Hatlo et al’s publication). 

The calculated distribution of fluid velocity uz along the nanopore radial direction r is plotted as 
follows: 
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