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1 White Noise Waveform Analysis

Reverse-correlation analysis requires using odor test stimuli with a constant spectral
density. We designed odor test stimuli with an approximately flat spectrum of up to
30Hz (Fig. S1). Since the bandwidth of Or59b OSNs is approximately 25 Hz (data not
shown), reverse-correlation analysis can be applied. The autocorrelation of the odor test
stimuli is shown in Figure S2.

Spike-triggered analysis requires stimuli with a Gaussian distribution. The distribu-
tion of five white noise odor waveforms with different mean concentration values (19,
27, 39, 56, 89, and 112 ppm) closely follows the Gaussian distribution (Fig. S3).

The footprint or input space of the nonlinear transformation identified with the
white noise odor protocol is shown in Figure S4. The color code is associated with the
6 different mean concentration values.

2 Methods of Least Square Regression for Nonlinear
blocks

We estimated the 1D nonlinearity block using two least-square regression methods:
polynomial regression and Ridge regression. Ridge regression was further employed for
the estimation of 2D nonlinearities.

2.1 1D Case

2.1.1 Least Squares
Let f: X — Y be a function and, for simplicity, assume that X,Y C R.

Assume that f is unknown. Known, however, are the measurements {y1,vs,...,yn}
of the function f at irregularly spaced points {xi,xs,...,zn}, i€, y; = f(x;), i =
1,...N.

Our goal is to estimate the values {g1, U2, ..., 9} of f at the regularly spaced points
{#1,%2,...,Zp}. In other words, ; are such that z; —2;_1 = h, foralli =2,..., M and
some h € R. One way to determine the values g; is by using linear interpolation and least
squares. Let y = [y1,¥2,...,Yn], X = [T1, 29, ...,2xy]. Similarly, let y = [91, Y2, ..., U]
and X = [T, 22, ..., Ty

Given y; = f(z;) such that ; < x; < &, for some j € [1,..., M — 1], we can use

linear interpolation to write

. N . . N T, — Ts
Vi = Y; + (U1 — 9;)0i = (1 — 60,)9; + 0,341, where 0; = —L.
Lj+1 = Lj

If the problem is well posed, then each y; is a linear combination of §;’s and we can write

y = Ay +e¢,



where A is the interpolation matrix and € € R¥ is the residual.
To find the optimal ¢, we solve the following unconstrained minimization problem:

min [} min [y - AY[3

The problem above is convex since the objective function is quadratic in y. We can
find the optimal solution y* by setting the gradient of the objective function to zero.
We thus obtain the normal equation

ATAy — ATy =0.
The optimal solution y* is given by
vy =(ATA)T'ATy.
We note that the solution exists and is unique if the columns of A are independent.
For the case when the problem is ill-posed we have to use a different method.
2.1.2 Tikhonov Regularization

If the problem is ill-posed, we can introduce a regularization parameter to the ob-
jective function and attempt to solve the Tikhonov regularization problem:

min [y~ AF[3+ 0513, where 6 € Roo

The problem is clearly convex. The normal equation is given by
(ATA +60)y = Ay
and the optimal analytical solution is
vy =(ATA+I)'ATYy.

We note that because ATA + 61 = 0, i.e., positive definite, the Tikhonov regularized
least squares requires no rank assumptions about A.

2.1.3 Smoothing Regularization (1D Ridge Estimator)

An extension of Tiknonov regularization is the smoothing regularization. The idea
is the same as before, namely to introduce a regularizer so as to convert an ill-posed
problem into a tractable one.

Assuming that the function f : X — Y is smooth, instead of adding ||y||, we can
add a regularizer of the form ||D%y||, where the matrix D* represents an approximate
differentiation of the ith order (typically i = 1,2). This way ||D"y|| represents a measure
of the variation or smoothness of y.

We therefore solve the following convex optimization problem:



min [y — Ay|3 +dIDyll3, where &€ R,
The optimal solution is given by
- % i i1—1
vy =[ATA+4§D")'D’] Aly.
The operator D? is easy to postulate in matrix form. For example, given some g;,
the first order differentiation near g; can be approximated by
Yir1 = Yi _ Yit1 — Ui
Tipi—2&  h

since ; are the regularly spaced points with #;,1 — #; = h, Vi. Thus the operator D! is
of the form

-1 1 0 -~ 0 0 0
o -1 1 --- 0 0 O
o 0 -1 -~ 0 0 O
D! = 1 : : : : c | @ pM-DxM
h o o0 o --- 1 0 0
o o o --- =1 1 0
o o o --- 0 —-11

Similarly, the second order differentiation can be approximated by

(Giv2 = Oiv1) — Wir1 — 91) 0 — 20is1 + it

h? h?
Thus the operator D? is of the form
(1 -2 1.0 -~ 0 0 0 0]
o 1 -21 -- 0O 0 0 0
) 0 0 1 2.+ 0 0 0 O
2 L1 . : : . (M—2)x M
D =2 Do : : ot eR L
o o o o0 -~ =21 0 0
0 0 o 0 --- 1 -2 1 0
(00 00 - 0 1 —21

We note that ||D?y||% represents a measure of the mean-square curvature of the
underlying function f: X — Y.

2.2 2D Ridge Estimator

The 2D ridge estimator essentially solves the 2-dimensional version of the smoothing
regularization. Either ||D'y|| or |D?y| can be used as regularizers.

The interpolation matrix A can be computed by using either (1) nearest neighbor
interpolation, (2) triangle (linear) interpolation or (3) bilinear (tensor product linear)
interpolation.



2.3 Ridge Estimator Implementation

The ridge estimator used in this study is called gridfit and was adapted from DErrico
(2005).

2.4 First Order Polynomial Regression

_ The first order polynomial regression finds the optimal polynomial coefficients & and
[ of the nonlinearity f by minimizing the mean-squared error of the model prediction:

A

(&, 3) = arg min /ER (A(s) — [a- (h* u)(s) + B))ds.

aiﬁ

We note that & and B can be obtained using the least squares estimation based on the
QR decomposition.

3 Identification Using the Triangle Odor Waveforms

In order to estimate the nonlinear block in the triangle odor protocol we assumed
that the linear filters are those of the white noise odor protocol. The block diagram of
the LN cascade as well as the details of the identified blocks is shown in Figure S7.
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Fig. S1: The spectrum of odor test stimuli is white up to about 30 Hz.
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Fig. S2: Autocorrelation of the odor test stimuli.
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Fig. S3: The distribution of the measured white noise odor stimuli. Solid lines are histograms of odor
waveforms and the dashed lines (same color) closely approximate the Gaussian distribution.
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Fig. S4: Footprint of the white noise protocol



A Acetone Staircase Waveform D
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Raster of the Or59b Sensory Neuron Response
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PSTH of the Or59b Sensory Neuron Response
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Fig. S5: The OSN response to the staircase waveform. (A) The staircase acetone odor
waveform is plotted against time. The dashed vertical lines (red) indicate the times at which the odor
concentration is either increased or decreased in a step-like fashion. The length of each step is 2s. (B)
The raster of the OSN response to 10 consecutive presentations of the staircase odor waveform. (C)
The PSTH of the OSN response to the staircase waveform was computed using a 100 ms bin size with a
25 ms sampling interval. Red horizontal lines denote the OSN response to the odor concentration and
black arrows point out the neural response to the rate of change of the odor concentration. (D)-(F) A
one-second-long window from (A)-(C).



A Acetone Frozen Noise Waveforms, 60 trials D
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Fig. S6: The OSN response to the acetone frozen noise odor waveform. (A) 60 consecutive
presentations of the frozen noise odor waveform. Note the remarkable reproducibility in odor delivery.
(B) The corresponding raster of the OSN response. (C) The PSTH of the OSN response to the
frozen noise waveform was computed using a 20 ms bin size and a 1ms sampling interval. The BARS
algorithm applied to a PSTH with non-overlapping 10 ms bins provides an additional estimate of the
neural response. (D)-(F) A one-second-long window from (A)-(C).
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Fig. S7: The identification of the nonlinear block of Or59b OSNs using triangle odor
waveforms (A) The identified model of Or59b OSNs consist of two linear filters derived by using the
white noise odor protocol and the two-dimensional non-linearity derived by employing the triangle odor
protocol. (B) Two linear kernels from spike-triggered covariance analysis are used to analyze triangle
waveforms. (C) Two-dimensional non-linearity is constructed from the input/output data obtained
using the triangle odor protocol. (D) Contour plot of the non-linearity in (C).
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