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Figure S1 Histogram showing phenotypic bill depth observations for house sparrows in northern Nor-
way, indicating a Gaussian distribution.
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Figure S2 Comparison of INLA and MCMC. INLA (solid line) and MCMC estimates (histogram) for
different number of iterations for MCMC for the posterior marginal of σ2

u and σ2
e for the bill depth of

house sparrows in northern Norway: 10000 iterations (A) σ2
u and (B) σ2

e , 100000 iterations (C) σ2
u and

(D) σ2
e , 200000 iterations (E) σ2

u and (F) σ2
e . INLA used 7 seconds and MCMC used 51 seconds, 8.4

minutes and 17 minutes, respectively.
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Figure S3 Prior sensitivity analyses for synthetic Gaussian, binary, Binomial, and Poisson case studies.
Posterior mean with 95% credible interval for prior InvGamma(a, b), where a = b is equal to 0.0001,
0.01, 0.5, 1 and 10, respectively (note that estimates are shifted relative to the x-axis for clarity). (A)
Gaussian data for σ2

u = 0 (filled squares, dashed line) and σ2
u = 0.31 (open squares, solid line) for INLA,

(B) binary data for h2 = 0, INLA (open squares, solid line) and MCMC (filled squares, dashed line), (C)
Binomial data for h2 = 0.9 (open squares, solid line) and h2 = 0.038 (filled squares, dashed line) for
INLA, (D) zero-inflated Poisson data for σ2

u = 0.31 (open squares, solid line) and σ2
u = 0 (filled squares,

dashed line) for INLA.
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Figure S4 Comparison of INLA and MCMC. INLA (solid line) and MCMC estimates (histogram) for
different number of iterations for MCMC for the posterior marginal of σ2

u and σ2
e for a large synthetic

pedigree and simulated dataset of np = 100072 individuals: 10000 iterations (A) σ2
u and (B) σ2

e , 100000
iterations (C) σ2

u and (D) σ2
e , 500000 iterations (E) σ2

u and (F) σ2
e . INLA used 7.4 minutes and MCMC

used 29 minutes, 3.6 hours and 17.9 hours, respectively.
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Figure S5 Posterior of difference in mean breeding values for bill depth between cohorts 1993 and
2002 in house sparrows in northern Norway.

Holand et al. 6SI



LRS/lifespan

F
re

qu
en

cy

0 1 2 3 4

0
20

0
40

0
60

0
80

0
10

00

Figure S6 Histgram showing observed lifetime reproductive sucess (LRS) relative to the lifespan
(LRS/lifespan) in house sparrows in northern Norway, indicating a zero-inflated Poisson distribution.
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Table S1 Inference from INLA for synthetic Poisson data. Simulated under model
yi | λi ∼ Pois(ni, λi), ηi = log(λi) = β0 + ui, with β0 = 0, levels of σ2

u ranging from 0 to 1, and
missing pattern similar to the house sparrow Poisson case study. σ̂2

u is the posterior mean additive genetic
variance with standard deviations (sd), and 95% credible interval (CI).

σ2
u σ̂2

u (sd) 95% CI

0 0.08 (0.02) (0.05,0.13)

0.05 0.09 (0.02) (0.05,0.13)

0.1 0.12 (0.03) (0.07,0.18)

0.15 0.14 (0.03) (0.09,0.21)

0.2 0.20 (0.04) (0.13,0.27)

0.3 0.33 (0.05) (0.25,0.43)

0.4 0.43 (0.05) (0.33,0.54)

0.5 0.53 (0.06) (0.43,0.65)

0.6 0.60 (0.06) (0.49,0.73)

0.7 0.68 (0.06) (0.56,0.81)

0.8 0.84 (0.08) (0.69,1.00)

0.9 0.91 (0.08) (0.77, 1.08)

1 0.99 (0.09) (0.83,1.17)
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File S1

Model formulations for Gaussian animal model

A Gaussian animal model can be formulated in two alternative ways, both fitting the INLA framework.

Model formulation 1 (MF1): Likelihood yi|ηi ∼ N (ηi, σ
2
e) and latent field ηi = β0 + zTi β + ui + εi,

where the variance of ε is fixed to a small value.

Model formulation 2 (MF2): Likelihood yi|ηi ∼ N (ηi, σ
2
small), i.e. the variance of the likelihood is

fixed to a small value, and latent field ηi = β0 + zTi β + ui + εi, where the variance of ε is σ2
e . The

σ2
small can be interpreted as measurement uncertainty.

When estimating the narrow sense heritability, h2, in the Gaussian case, we use model formulation

MF2, which out of convenience is parametrized with (σ2
u, h

2) instead of (σ2
u, σ

2
e). Further, (σ2

u, h
2) is

given a prior such that it corresponds to the prior of (σ2
u, σ

2
e), hence, the same prior under two different

parametrizations.

The DIC is based on evaluating the likelihood, and is not invariant with respect to parametrization

(Spiegelhalter et al. 2002). Using model formulation MF2, i.e. a fixed small variance for the likelihood

does not work numerically; almost all models get the same DIC to the precision given by INLA. So if

DIC needs to be calculated the animal model has to be formulated in an alternative way (in the INLA

framework), where the variance of ε is fixed to a small value in the latent field, i.e. using MF1. Both

model formulations coincide if the same priors are used for the hyper-parameters (β, σ2
e , σ

2
u), and are

latent Gaussian fields with only two non-Gaussian parameters, namely θ = (σ2
u, σ

2
e). For MF1 ε can be

omitted from the model. It is included here to be consistent with MF2. Both model formulations have

their numerical advantages depending on the aim of the analysis. However, we have to be cautious which

model formulation we use depending on the purpose of the analysis.

To summarize, when ui,
∑
i∈C wiui, β or σ2

u is of interest both MF1 and MF2 might be used. If σ2
e

or DIC is the aim of the analysis MF1 has to be used, while MF2 with parametrization (σ2
e , h

2) has to be

used if h2 is of interest. Hence we might have to fit two (INLA) models to get all estimates of interest.
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File S2

Prior sensitivity analysis for synthetic datasets

To test for prior sensitivity we do a sensitivity analysis for several synthetic datasets similar to those in

Synthetic case studies section. The house sparrow pedigree with Gaussian, binary, binomial and Poisson

likelihoods are used. Each dataset is analyzed with five different priors for σ2
u and, when relevant, σ2

ε ;

InvGamma(a, b) with a = b = {0.0001, 0.01, 0.5, 1, 10}. These priors range from uninformative priors

to very informative; InvGamma(10, 10) has expected value 1.1 and a standard deviation of 0.37. The

results from the sensitivity analyses are visualized in Figure S3.

(A) shows results for two synthetic Gaussian datasets, simulated under model yi|µi, σ2
e ∼ N (µi, σ

2
e), ηi =

µi = β0 + ui, with β0 = 0 and σ2
u + σ2

ε = 1 for i) σ2
u = 0 and ii) σ2

u = 0.31. The same missing data

structure as in the house sparrow Gaussian case study is imposed giving 1025 individuals in the dataset.

Inference is done with INLA. We find that with no heritability (σ2
u = 0) the results are very prior sensi-

tive, while with a heritability of h2 = σ2
u = 0.31 only the most informative prior changes the inference

considerably.

(B) shows results for synthetic binary dataset with observations for all the individuals in the pedigree.

The data are simulated from a model with logit link, ηi = β0+ui with β0 = 0 and no genetic component

(σ2
u = 0). As we in Synthetic Binomial case study section experienced problems using INLA in the

binary case, the inference is done with both INLA and MCMC. From the MCMC results we find that the

inference is prior sensitive, and also that the systematic errors for INLA are prior sensitive.

(C) shows results for two synthetic binomial datasets. In both datasets the number of trials ni is as

in the house sparrow breeding season success dataset, and also the missing patterns coincide with this.

A logit link is used and ηi = β0 + ui with β0 = 0. We have a case with high heritability; i) h2 = 0.9

and one with low ii) h2 = 0.038 (or σ2
u = 0.13 as estimated from the breeding season success dataset).

Analyses are done using INLA. We find that neither case is very prior sensitive.

(D) shows results for two synthetic zero-inflated Poisson datasets. They are simulated under model

yi | λi ∼ Pois(ni, λi), ηi = log(λi) = β0+ui with β0 = 0, with missing pattern as in the house sparrow

Poisson case study, and with no heritability (h2 = σ2
u = 0) and moderate heritability (σ2

u = 0.31).

Inference is done with INLA. The results are very prior sensitive for the dataset without heritability,

while only the most informative prior gives any considerable difference for the dataset simulated with
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σ2
u = 0.31.
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File S3

R code for synthetic data using the R package AnimalINLA

R code for simulating data with same dependency as the real pedigree, where the sparse structure matrix

Cmatrix is obtained fromA−1 calculated in the R package AnimalINLA

(www.r-inla.org/related-projects/animalinla).

We simulated data with different values of σ2
u =var.u and σ2

e =var.e with the function simu-

late.breeding.values:

Simulation code for breeding value:

##need the package "spam"

install.packages("spam")

inla.complete.Cmatrix <- function(C)

{

idx = (C$i != C$j)

return (list(i=c(C$i, C$j[idx]), j=c(C$j, C$i[idx]),

values=c(C$values, C$values[idx])))

}

simulate.breeding.values <- function(Cmatrix, varu, nsamples = 1)

{

library(spam)

prec = 1/varu

Comp = inla.complete.Cmatrix(Cmatrix)

S = spam(x = list(i = Comp$i, j = Comp$j, values =

Comp$values))

Q = prec * S

breeding = rmvnorm.prec(nsamples,mu=rep(0, nrow(Q)), Q)

breeding = as.vector(breeding)
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}

##define the sparse-matrix from the relationship matrix

##computed in compute.Ainverse(), used in simulate.breeding.values()

Cmatrix = list(i= xx$Ainverse[,1],j = xx$Ainverse[,2], values =xx$Ainverse[,3])

Synthetic Gaussian case study

library(AnimalINLA)

data(sparrowpedigree)

##Run AnimalINLA

xx=compute.Ainverse(sparrowpedigree)

##number of individuals in the pedigree

Nbird = dim(sparrowpedigree)[1]

## choose the values of the hyperparameters

var.u = 0.6

var.e = 0.4

## simulate the breeding values and the environemental effect

breeding = simulate.breeding.values(Cmatrix, var.u)

env = rnorm(Nbird, mean = 0, sd = sqrt(var.e))

## compute the trait

trait = breeding + env

## make the data frame

data = data.frame(y=trait,u=1:Nbird)

Holand et al. 14SI



##Run AnimalINLA

gauss=animal.inla(response=y, genetic=c("u"),

Ainverse =sparseMatrix(i=xx$Ainverse[,1],

j=xx$Ainverse[,2],x=xx$Ainverse[,3]),

data=data, type.data="gaussian",

dic=TRUE,sigma.e=TRUE)

##hyperparameteres

gauss$summary.hyperparam

Synthetic Binomial case study

library(AnimalINLA)

data(sparrowpedigree)

##need the package "boot"

install.packages("boot")

library(boot)

## numbers of individuals in the pedigree

Nbird = dim(pedigree)[1]

## set the value for the hyperparameter, where beta0 is the intercept

var.u = 0.3

beta0 = 1

## set the number of trials

Ntrials = sample(1:9, 3574 , replace=T)

## simulate breeding values
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breeding = simulate.breeding.values(Cmatrix, var.u)

eta = beta0 + breeding

p = inv.logit(eta)

## simulate the trait

trait = rbinom(Nbird, Ntrials, p)

data = data.frame(y = trait,u = 1:Nbird,

Ntrial = Ntrials)

##Run AnimalINLA

xx=compute.Ainverse(sparrowpedigree)

bin=animal.inla(response=y, genetic=c("u"),

Ntrials = Ntrial,

Ainverse =sparseMatrix(i=xx$Ainverse[,1],

j=xx$Ainverse[,2],x=xx$Ainverse[,3]),

data=data,type.data="binomial",

dic=TRUE)

##hyperparameteres

bin$summary.hyperparam

Synthetic Poisson case study

library(AnimalINLA)

data(sparrowpedigree)

##number of individuals in the pedigree

Nbird = dim(sparrowpedigree)[1]
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## choose the values of the hyperparameters

var.u = 0.7

beta0 = 1

##Run AnimalINLA

breeding = simulate.breeding.values(Cmatrix, var.u)

## compute the trait

eta = beta0 + breeding

lambda=exp(eta)

trait=rpois(Nbird,lambda)

## make the data frame

data = data.frame(y=trait,u=1:Nbird,n=rep(1,Nbird))

##Run AnimalINLA

xx=compute.Ainverse(sparrowpedigree)

pois=animal.inla(response="y", genetic=c("u"),

Ainverse =sparseMatrix(i=xx$Ainverse[,1],

j=xx$Ainverse[,2],x=xx$Ainverse[,3]),

E=n,data=data,type.data="poisson",dic=TRUE)

##hyperparameters

pois$summary.hyperparam
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File S4

R code for random effects in INLA

Including individual as a independent random effect in the latent field is implemented the same way in

INLA for all case studies in house sparrow population (Gaussian, binomial and Poisson). Note that in the

Gaussian case study we have repeated measurements, i.e. possible several observation for each individual

random effect, while in the binomial and Poisson cases there are only one observation for each individual.

For the simulated datasets in AnimalINLA (only one measurement for each individual);

library(AnimalINLA)

library(INLA)

library(Matrix)

data(sparrowpedigree)

xx = compute.Ainverse(sparrowpedigree)

Ainv = xx$Ainverse

map = xx$map

Cmatrix = sparseMatrix(i=Ainv[,1],j=Ainv[,2],x=Ainv[,3])

Gaussian case study:

data(sparrowGaussian)

Ndata = dim(sparrowGaussian)[1]

## Mapping the same index number for "Individual" as in Ainv

## The IndexA column is the index in the A inverse matrix

sparrowGaussian$IndexA = rep(0,Ndata)

for(i in 1:Ndata)

sparrowGaussian$IndexA[i] = which(map[,1]==sparrowGaussian$Individual[i])

#Including an extra column for individual effect

sparrowGaussian$IndexA.2=sparrowGaussian$IndexA
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formula = y ˜ f(IndexA,model="generic0", Cmatrix=Cmatrix,

constr=TRUE,param = c(0.5, 0.5)) +

f(IndexA.2,model="iid",param = c(1,0.001),

constr=TRUE)

y in formula is the trait, i.e bill depth in the case study, IndexA and IndexA.2 is the individuals in the

data (these have to be given different names) where IndexA is the additive genetic effect and IndexA.2 is

the individual random effect.

the likelihood is implemented in the inla call;

model = inla(formula=formula, family="gaussian",

data=sparrowGaussian,

control.family=list(hyper = list(theta =

list(param = c(0.5, 0.5), fixed = FALSE))),

only.hyperparam =FALSE,control.compute=list(dic=T))

summary(model)

#Example finding the posterior marginal distribution and mean (95% CI)

#for additive genetic variance and individual random variance

sigma.IndexA = inla.marginal.transform(function(x) 1/x,

model$marginals.hyperpar$"Precision for IndexA")

e.IndexA=inla.expectation(function(x) x, sigma.IndexA)

ci.IndexA=inla.qmarginal(c(0.025, 0.975), sigma.IndexA)

#and posterior marginal distribution and mean (95% CI)

#for individual random variance

sigma.IndexA.2 = inla.marginal.transform(function(x) 1/x,

model$marginals.hyperpar$"Precision for IndexA.2")

e.IndexA.2=inla.expectation(function(x) x, sigma.IndexA.2)

ci.IndexA.2=inla.qmarginal(c(0.025, 0.975), sigma.IndexA.2)
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Binomial case study:

data(sparrowBinomial)

Ndata = dim(sparrowBinomial)[1]

## Mapping the same index number for "Individual" as in Ainv

## The IndexA column is the index in the A inverse matrix

sparrowBinomial$IndexA = rep(0,Ndata)

for(i in 1:Ndata)

sparrowBinomial$IndexA[i] = which(map[,1]==sparrowBinomial$Individual[i])

#Including an extra column for individual effect

sparrowBinomial$IndexA.2=sparrowBinomial$IndexA

formula = y ˜ f(IndexA,model="generic0", Cmatrix=Cmatrix,

constr=TRUE,param = c(0.5, 0.5)) +

f(IndexA.2,model="iid",param = c(1,0.001),

constr=TRUE)

y in formula is the trait, i.e number of years individuals produced at least one recruit in the case

study, IndexA and IndexA.2 is the individuals in the data (these have to be given different names) where

IndexA is the additive genetic effect and IndexA.2 is the individual random effect.

The likelihood is implemented in the inla call;

model = inla(formula=formula , family="binomial", data=sparrowBinomial,

Ntrials=Ntrial,

only.hyperparam = FALSE,control.compute=list(dic=T))
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Ntrial is the number of trials, i.e the number of breeding seasons individuals were alive during the study

period.

summary(model)

#Example finding the posterior marginal distribution and mean (95% CI) for

#additive genetic variance and individual random variance

sigma.IndexA = inla.marginal.transform(function(x) 1/x,

model$marginals.hyperpar$"Precision for IndexA")

e.IndexA=inla.expectation(function(x) x, sigma.IndexA)

ci.IndexA=inla.qmarginal(c(0.025, 0.975), sigma.IndexA)

#and posterior marginal distribution and mean (95% CI)

#for individual random variance

sigma.IndexA.2 = inla.marginal.transform(function(x) 1/x,

model$marginals.hyperpar$"Precision for IndexA.2")

e.IndexA.2=inla.expectation(function(x) x, sigma.IndexA.2)

ci.IndexA.2=inla.qmarginal(c(0.025, 0.975), sigma.IndexA.2)

Poisson case study:

data(sparrowPoisson)

Ndata = dim(sparrowPoisson)[1]

## Mapping the same index number for "Individual" as in Ainv

## The IndexA column is the index in the A inverse matrix

sparrowPoisson$IndexA = rep(0,Ndata)

for(i in 1:Ndata)

sparrowPoisson$IndexA[i] = which(map[,1]==sparrowPoisson$Individual[i])

#Including an extra column for individual effect
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sparrowPoisson$IndexA.2=sparrowPoisson$IndexA

formula = y ˜ f(IndexA,model="generic0", Cmatrix=Cmatrix,

constr=TRUE,param = c(0.5, 0.5)) +

f(IndexA.2,model="iid",param = c(1,0.001),

constr=TRUE)

y in formula is the trait, i.e total number of recruits individuals produced in the study period in the

case study, IndexA and IndexA.2 is the individuals in the data (these have to be given different names)

where IndexA is the additive genetic effect and IndexA.2 is the individual random effect.

The likelihood is implemented in the inla call;

model = inla(formula=formula,

family="zeroinflatedpoisson1",

#family="poisson" ,

data=sparrowPoisson,

E=n,

only.hyperparam = FALSE,

control.compute=list(dic=TRUE))

E is the exposure, i.e. the number of breeding seasons individuals were alive during the study period in

the case study.

summary(model)

#Example finding the posterior marginal distribution and mean (95% CI)

#for additive genetic variance and individual random variance

sigma.IndexA = inla.marginal.transform(function(x) 1/x,

model$marginals.hyperpar$"Precision for IndexA")

e.IndexA=inla.expectation(function(x) x, sigma.IndexA)

ci.IndexA=inla.qmarginal(c(0.025, 0.975), sigma.IndexA)

#and posterior marginal distribution and mean (95% CI)
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#for individual random variance

sigma.IndexA.2 = inla.marginal.transform(function(x) 1/x,

model$marginals.hyperpar$"Precision for IndexA.2")

e.IndexA.2=inla.expectation(function(x) x, sigma.IndexA.2)

ci.IndexA.2=inla.qmarginal(c(0.025, 0.975), sigma.IndexA.2)
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