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Supplementary Notes: Specification of the HMM 

 

Emission probability 

The HMM underlying mCarts consists of six states, among which three states represent RBP-bound motif sites 

at different positions of a cluster (S+, I+, +, shown in blue in Fig. 1C) and three other states represent 

background motif sites (S-, I-, -, shown in gray, Fig. 1C).  Each motif site (e.g., YCAY element) is an 

observation of one of the six states characterized by three types of features in the emission probability: clustering 

of neighboring sites (d), their accessibility (a) and conservation (c), as summarized in Table 1.    

 

Clustering of motif sites is explicitly modeled by the distance of each site to the preceding site (denoted as d), 

except the very first site in an input sequence (states S+ and S-, Fig. 1C and Table 1), for which a dummy 

distribution was used (Table 1).  The distance of the second and additional succeeding sites in a cluster (state +) 

followed the same distribution estimated from motif sites in CLIP tag clusters (P(d|+), e.g., blue curve in the left 

panel, Fig. 1B), while the distance of any other states followed another distribution estimated from YCAYs in 

background sequences (P(d|s), s={I+, I-, -}, gray curve in the left panel, e.g., Fig. 1B).  We also censored the 

distribution for motif sites belonging to a RBP-bound cluster [P(d|+), e.g., blue curve in the left panel, Fig. 1B], 

which imposed an implicit limit on the maximum spacing allowed for individual motif sites in an RBP-bound 

cluster.  For this study, we required d≤30, a threshold determined empirically by examining validated Nova and 

Mbnl target exons (see below), which is much less restrictive than several previous studies (1,2).  However, we 

also tried other thresholds (e.g., 20 and 50) and obtained qualitatively similar results.   

 

Motif conservation (denoted as c) was quantified using multiple alignments of 20 mammalian species (3) by 

branch length scores (BLS) (4), which were previously demonstrated to be effective in predicting binding sites 

of brain- and muscle-specific splicing factors of the RBFOX family (5).  Because the basal conservation level of 

sequences in different genomic regions varies dramatically, we modeled motif site conservation separately for 

sites in 5´ untranslated regions (UTRs), coding sequences (CDS), introns and 3´ UTRs.   

 

In vitro selection (6,7), X-ray crystallographic data (8), CLIP data (9) and computational analysis (10,11) 

consistently suggested that RNA secondary structures can modulate the accessibility and function of RBP motif 

sites.  The accessibility of a motif site (denoted as a) in local RNA secondary structures was measured by its 

probability of being located in single-stranded region, as predicted by the RNAplfold program (parameters: -u 4 

for tetramer motif, and a default window size of 70 nt) in the ViennaRNA package (12).   The probabilistic 

distributions of these features were estimated nonparametrically from motif sites in training CLIP tag clusters 

and background sequences, respectively, and represented by histograms (e.g., Fig. 1A and B).  Since 

conservation and accessibility scores are continuous, these variables were discretized into a specified number of 

bins (e.g., 20 bins in this study). 
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Together, each motif site can be denoted by xi,li = (di,ai,ci )  (i=1,2,…, N),  in which i is the index of the motif 

site, and li is an indicator that records the genomic location of the site (5´ or 3´	  UTRs, CDS, or introns).  For 

simplicity, these features are assumed to be independent with each other to estimate the overall emission 

probability: 

e(si,xi,li ) = P(xi,li | si ) = P(di | si )P(ci | si, li )P(ai | si ) ,                                                                                         (1)  

where si represents the state of the site.   

 

Transition between states 

Legitimate transitions between states  are naturally determined by the definition of a motif cluster 

while the other transitions are not allowed to occur (Fig. 1 C).  We denote the probability of staying at the “+” 

state and the “-” as a[+] and a[-], respectively, and they can be estimated from the average duration (number) of 

sites in each CLIP tag cluster (μ[+]) and background sequences (μ[-]), respectively, a[+]=1-1/μ[+], and a[-

]=1/μ[-].  Since the size of each background sequence was chosen arbitrarily, for this study we estimatedμ[-] 

based on the relative frequency of YCAYs in positive versus negative training set r, μ[-] = μ[+]/r.  Transitions 

between different states can be calculated accordingly, as summarized in Fig. 1C.  

 

Model training and prediction 

The parameters of the model (transition probabilities and emission probabilistic distributions) were 

estimated from the training data.  During prediction, each input sequence (i.e., whole transcripts including 

introns with 10 kb extension on both sides for this study), which usually contains a sufficiently large number of 

motif sites, is processed independently.  The model takes the motif sites (represented by features described above) 

in each sequence as input, and decodes the state of each site by the Viterbi algorithm to maximize the joint 

likelihood of the hidden states and the observed variables (13).   

P(s1, s2,..., sN ,x1,l1,x2,l2 ,...,xN ,lN | λ)
= P(s1, s2,..., sN | λ)P(x1,l1,x2,l2 ,...,xN ,lN | s1, s2,..., sN ,λ)

= P(s1) P(si | si−1)2

N
∏ P(xi,li | si )1

n
∏                                                                                    (2)

 

 

RBP-bound clusters are defined to be a consecutive series of states S+, +, …,+, or I+, +, …,+, and ranked by the 

log-likelihood ratio: 

t(si, si+1)

λ = (t,e)
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C = log
P(x1,l1,x2,l2 ,...,xn,ln | s1 = I+, s2 = +,..., sn = +)
P(x1,l1,x2,l2 ,...,xn,ln | s1 = I−, s2 = −,..., sn = −)

"
#
$

%$

&
'
$

($

= log P(x1,l1 | s1 = I+) / P(x1,l1 | s1 = I−){ }

+ log P(xi,li | si = +) / P(xi,li | si = −){ }i=2

n
∑

,                                                                               (3a)
 

for a cluster in which the first site is the very first site in the input sequence, or otherwise
 

C = log
P(xk,lk ,xk+1,lk+1,...,xk+n−1,lk+n−1 | sk = I+, sk+1 = +,..., sk+n−1 = +)
P(xk,lk ,xk+1,lk+1,...,xk+n−1,lk+n−1 | sk = I−, sk+1 = −,..., sk+n−1 = −)

"
#
$

%$

&
'
$

($

= log P(xk,lk | sk = I+) / P(xk,lk | sk = I−){ }

+ log P(xi,li | si = +) / P(xi,li | si = −){ }i=k+1

k+n−1
∑

,                                                          (3b)

 
where k (>1) is the first motif site in a cluster and n is number of motif sites of the cluster. 
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Fig. S1: (related to Fig. 1B in the main text) Emission probability distributions of 
spacing of Nova-binding motif sites, their accessibility and conservation.   
A. Distributions estimated from the full training set, which is the same as shown in Fig. 
1B in the main text.  B,C. The whole transcriptome was split into two halves, and 
training data in each half was used to estimate the distributions. See Fig. 1B legends in 
the main text for more details. 



Fig. S2: The overlap between predicted YCAY clusters and CLIP tag clusters with 
varying peak heights (PH). 
Non-repetitive CLIP tag clusters are binned according to PH and compared to YCAY 
clusters. For each bin, the proportion of CLIP tag cluster footprints (+/-50 nt around 
peak) that overlap with YCAY clusters (blue bars), or control YAAY clusters (gray bars), 
is shown on the left axis. The cumulative number of non-repetitive Nova CLIP tag 
clusters is shown as the black curve (right axis).  
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Fig. S3: General characteristics of predicted YCAY clusters.  
A. YCAY clusters are divided into bins with different scores. The probability of clusters 
with a specific number of YCAY elements is calculated for each bin separately, and is 
represented in gray scale.   
B. Similar to (A), but the probability of specific cluster width is shown.  
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Fig. S4 (continued next page). 
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Fig. S4: Predicted Nova-bound YCAY clusters capture extensive Nova binding and 
distal alternative splicing regulation.  
 
A. The predicted YCAY cluster downstream of the Nova regulated Ptprf exon 6 is shown.  
Top panel: Below the coordinates and schematic representation of the gene structure are 
four tracks: Nova CLIP tags, coordinates of YCAY elements with conservation (BLS) 
shown in gray scale, predicted YCAY clusters and 20-way mammalian phastCons scores.   
Bottom panel: A zoom-in view of the region flanking exon 6.  The predicted YCAY cluster 
consists of 23 YCAY elements in a 200-nt region, and it ranks among the top of all 
predictions (YCAY cluster score=74).  The YCAY cluster predicted by our previous analysis 
(Ule et al. 2006 Nature,  444:580-586) was indicated by a solid box in the YCAY track. 
 
B. The predicted YCAY cluster upstream of the Nova-regulated Ctnna2 exon 17.  Top 
panel: Gene coordinates and structure, CLIP tags, YCAY elements and predicted clusters, 
and 20-way mammalian conservation are shown as in (A).  Middle panel: a zoom-in view 
of the region between the upstream exon 16 and the predicted YCAY cluster, which is 1.6 
kb away from the 5´ splice site.  Bottom panel: A detailed view of sequences of the 
predicted YCAY clusters in the mouse genome and six other representative mammalian 
species.  YCAY elements are highlighted by inversed colors.  Turnover (creation and loss) 
of YCAY elements in the predicted cluster is tolerated and weighted by the HMM. 
 
C. Exon 27 of Rap1gap is repressed by Nova. Top panel: The highest-scoring YCAY 
cluster (score=20), overlapping with a robust Nova CLIP tag cluster (PH=20), is located in 
the upstream intron, 650 nt away from the 3' splice site.  This YCAY cluster consists of 20 
YCAY elements, spanning 180 nt. Bottom panel: A zoom-in view of part of the predicted 
YCAY cluster.  Extensive turnover of YCAY element (highlighted with inverted colors) in 
different species is observed. 
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Fig. S5: The RNA map of Nova regulated alternative splicing. 
A set of 325 non-redundant cassette exons regulated by Nova are shown. 
A. The normalized complexity map of Nova CLIP tags for cassette exons activated (red) or 
repressed (blue) by Nova is shown.  The number of exons in each group is indicated. 
B. The normalized complexity map of YCAY clusters is displayed similar to panel (A).  
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Fig. S6: Predicting Nova regulated alternative exons using YCAY clusters. 
Exons analyzed in ref. (Ule et al. 2006 Nature,  444:580-586) and predicted based on mCarts 
YCAY cluster score (≥21.1) are shown. In each panel, the three tracks from top to bottom are 
distribution of CLIP tags, mCarts YCAY cluster scores, and gene structure in the alternatively 
spliced region.  The highest-scoring YCAY clusters and major CLIP tag cluster peaks are 
indicated.  Alternative exons with Nova-dependent inclusion and exclusion are shown in red, 
and blue, respectively.  Exons above the “net score” threshold (≥2.7) (Ule et al. 2006 Nature,  
444:580-586)  are indicated by asterisk. 
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Fig. S7: Emission probability distributions of spacing of Mbnl-binding motif sites, 
their accessibility and conservation.   
See Fig. 1B legend in the main text for more details. 



Fig. S8: The overlap between predicted YGCY clusters and Mbnl2 CLIP tag 
clusters depending on the stringency of each dataset. 
A. The overlap between the footprints of Mbnl2 CLIP tag clusters and predicted YGCY 
clusters with varying scores. Non-repetitive YGCY clusters are binned into groups 
according to their scores. For each bin, the proportion of YGCY clusters overlapping 
with CLIP tag cluster footprints (+/-‐50	  nt	  around	  peak) is shown (blue bars, left axis). 
YACY clusters predicted by the same model are shown (gray bars, left axis) as a 
control.  The cumulative number of non-repetitive YGCY clusters is shown as the black 
curve (right axis).  
 
B. The overlap between predicted YGCY clusters and Mbnl2 CLIP tag clusters with 
varying peak heights (PH). Non-repetitive CLIP tag clusters are binned according to PH 
and compared to YGCY clusters. For each bin, the proportion of CLIP tag cluster 
footprints that overlap with YGCY clusters (blue bars), or control YACY clusters (gray 
bars), is shown on the left axis. The cumulative number of non-repetitive Mbnl2 CLIP tag 
clusters is shown as the black curve (right axis).  
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Fig. S9: The normalized complexity map of Mbnl2-regulated alternative splicing. 
See Fig. S5 legend for more details. 
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Fig. S10: Mbnl2-regulated alternative exons predicted  from CLIP data and those 
predicted from YGCY clusters are complementary to each other. 
A. Target exon scores predicted from CLIP data (x-axis) are plot against scores predicted 
from YGCY clusters (y-axis). Each dot is an exon.  All cassette exons are shown in gray, and 
exons with Mbnl2-dependent splicing as determined by Affymetrix exon-junction microarray 
or RNA-Seq data are overlaid in orange.  An arbitrary threshold of summarized CLIP tag 
cluster score (3.8) or YGCY cluster score (10) is indicated by the dotted lines. 
 
B. Breakdown of exons according to their summarized CLIP tag cluster score or YGCY 
cluster score above or below the threshold.  The number (orange) and percentage of exons 
with Mbnl2-dependent splicing in each category are also shown. 
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