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SBML Model

The SBML file of the model used for this study has been archived at the BioModels Database
(MODEL1111150000).

Flow Cytometry

Flow cytometry data was taken with a Becton-Dickinson LSR II Cell Analyzer, fitted with 405nm
and 488nm lasers. Because a wide range of fluorescence intensities arose as inducer levels were
scanned, the sensitivity (set by voltage) of photomultiplier tubes in the flow cytometer was varied
from sample to sample. We calibrated the photomultiplier tubes by scanning a range of voltages
for cells with a constant mean level of fluorescent protein, either YFP or CFP alone. We fit the
resulting mean YFP and CFP intensity curves to piecewise-smooth functions of voltage. These
functions were used to correct flow cytometry data by scaling all measurements to a common
apparent voltage.

In order to be able to directly compare numbers of fluorescent proteins of YFP and CFP, we
used a plasmid containing two copies of the PLtetO−1 promoter, one driving YFP-LAA and one driv-
ing CFP-LAA (pZA11-YC-LAA). This was constructed using similar techniques to those described
above. Using this strain and the assumption that the two proteins should be produced in equal
mean levels due to their tandem arrangement on the same plasmid, we induced cells at various
concentrations of doxycycline and measured mean fluorescence. We scaled CFP fluorescence such
that the mean CFP fluorescence values at the selected induction levels were essentially the same
as the corresponding YFP mean fluorescence values (difference of 0.5% in the typical mean fluores-
cence), and we were able to determine a conversion factor to compare YFP “arbitrary units” (AU)
to CFP AU. This, combined with the Western blot data (see below) enabled the estimation of the
total number of each fluorescent protein in each data set.

As another validation of the queueing theory, we compared this dual-color induction data to
an almost identical plasmid, but one in which only YFP-LAA was produced from the PLtetO−1

promoter. Interestingly, we found that the overall level of YFP fluorescence was significantly lower
in the case of expression of only one of the two colors. This falls in line with queueing theory
predictions. That is, in the dual-color case, the total number of tagged proteins is doubled, so
ClpXP would be more overloaded than when just a single fluorescent protein type is produced.
This is further evidence that over-burdening the protease can lead to coupling between the levels
of two different proteins.
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As described in the main text, we also compared induction curves of tagged and untagged
fluorescent proteins, in an effort to determine if the queueing effect could be directly observed in
induction data. This also served to demonstrate that the effects observed throughout the experi-
ments were in fact due specifically to the abundance of tags, and not simply side effects of general
over-expression. To take this data, we created two plasmids very similar to those used for the
two-color study. We used the pZE24-mcs2a cloning plasmid [1], which has a kanamycin resistance
marker and the hybrid Plac/ara−1 promoter upstream of a multiple cloning site (mcs). We simply
replaced the mcs with either GFP or GFP-LAA, and used this to take induction data as described
in the main text.

For all flow results, a background subtraction procedure was performed on the raw data (after
the voltage correction described above) to arrive at reported YFP and CFP fluorescence statistics.
Using data from the experiments discussed in the main text, we defined the background mean of
YFP and CFP fluorescence as that derived from cells induced with 1 mM IPTG alone (in the
absence of arabinose or doxycycline). The background mean for each color was subtracted from
the mean of raw data.

0

0.5

1

1.5

<y
fp

>/
<c

fp
>

10 20 50 100 200
[dox]

10 100
0

0.5

1

1.5

[dox]

<y
fp

>/
<c

fp
>

a

0.5

1

1.5

2

2.5

3

10 20 50 100 200
[dox]

 b
C

V 
fo

r c
fp

Figure S1: Coupled enzymatic degradation of yellow and cerulean LAA-tagged fluorescent proteins by ClpXP
machinery in E. coli. (a) According to the stochastic queueing model, the ratio of the two mean concentrations
〈x1〉/〈x2〉 is equal to the ratio of the corresponding production rates λ1/λ2. In accordance with the model, the
ratio 〈yfp〉/〈cfp〉 exhibits the same dependence on dox concentration for three different levels of arabinose, which
allowed us to collapse all the data to a common curve by normalizing them by the mean value over the whole
range of employed dox concentrations. Inset shows the same data without collapsing. (b) Coefficient of variation
of CFP concentration decreases with increasing dox in the overloaded regime in qualitative agreement with the
queueing theory predictions (different symbols correspond to three levels of arabinose concentration similar to
panels c-d of Fig. 3 in the main text). Solid lines represent trend lines through the data.

As one further test of the stochastic queueing model, we used the theoretical results to deduce
the scaling relationship between the data sets in Fig. 3c of the main text at different levels of
arabinose. In other words, if correct, the theory can be used to predict how one can plot the data
such that it will collapse onto the same curve. The resulting verification of this prediction further
confirmed the general validity of the queueing theory approach (Fig. S1a). Lastly, we calculated
the noise (as measured by the coefficient of variation) of the CFP signal as a function of increasing
doxycycline (Fig. S1b). The general trend of these curves is also in agreement with the theoretical
predictions.

We did not investigate the effect of removing SspB [2], a protein associated with increased
affinity of tagged proteins to ClpXP. We anticipate that a moderate decrease in this Michaelis-
Menten affinity would not qualitatively change our conclusions.
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Protein Counts

A

B

Figure S2: Inverted image of Western blot film taken for cellular lysate data from two induction levels, where
IPTG and arabinose were held at 1 mM and .8%, respectively, and doxycycline was 32 ng/ml (A) and 68 ng/ml (B).
An antibody for GFP variants was used to detect the total amount of CFP and YFP inside these samples, when
compared to a purified GFP standard (left five lanes of both A and B).

Western blots were performed using standard techniques in order to quantify the number of
tagged fluorescent proteins being measured in our flow cytometry data. As a standard, we used
purified Enhanced GFP (BioVision 4999-100), supplied in a 1 mg/ml 100 µl aliquot. We chose to
measure protein levels in a sample of cells expressing the pNO-2CLAA plasmid, induced to various
levels of dual-color expression. For all samples, we used 1 mM of IPTG and 0.8% arabinose.
Samples were induced exactly as done for the flow cytometry experiments. Cells were grown
overnight without inducers, and then passed 1:1000 into inducers for 3 hours. In order to obtain
enough protein for quantitative detection, 50 ml of each sample was harvested by centrifugation
after 3 hours. ODs at 600 nm were taken just before centrifugation, in order to quantify cell
number (see below).

After centrifuging the samples and aspirating the inducing medium, the cells were resuspended
in 100 µl of SDS sample buffer to aid in cell lysis by boiling. The total volume after resuspension
was measured in order to obtain an accurate measurement of cell concentration. Cells were then
lysed and proteins denatured by subjecting the samples (both lysates and standards) to boiling
water for 5 minutes. A 12 lane 12% Tris-Glycine gel was used in order to have enough lanes for a
sufficient dilution series of both the cell lysate sample as well as the standard. The standard was
diluted to a concentration of 100 ng/µl, and fives samples were loaded on the gel in subsequent
2-fold dilutions, starting with 500ng. Similarly, the cellular lysate was loaded in subsequent 2-fold
dilutions, starting with a volume of 15 µl. The gel was run at 125 V for about 100 minutes, followed
by a membrane transfer run at 25 V for 90 minutes.

Standard blocking and probing reactions were set up using a GFP polyclonal rabbit anti-
body (Cell Signaling 2555S) and an Anti-Rabbit IgG (whole molecule)-Peroxidase antibody. After
exposing the membrane to the Chemiluminescent Peroxidase Substrate (Sigma, CPS-1), Kodak
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Figure S3: Cell count was correlated with OD by taking several measurements throughout logarithmic growth
of each. A linear fit of this data was then used to convert the OD of Western blot samples to a particular
concentration of cells.

BioMax Light Film was exposed to the membranes in a dark room for 60 seconds. Once a sat-
isfactory image was taken, processing was performed using ImageJ. Background correction was
performed to remove some of the background coloration from the image. The image was then
inverted so that bands showed as white on a black background (Fig. S2), and the freehand selection
tool was used to quantify the total intensity of each band. Comparing the total intensity of each
standard band to the known protein mass loaded on the gel, we were able to obtain a function to
convert band intensity to protein mass, and this was used to quantify several lanes of the cell lysate
samples that fell within a linear range (where the known two-fold dilution matched a two-fold drop
in band intensity). Finally the protein weight measurement was converted to a total protein count
per cell, using the weight of a single protein and the number of cells loaded onto the gel. Control
experiments were performed to ensure that this antibody binds with equal affinity to GFP, CFP,
and YFP. Cells expressing each protein from the same promoter were grown in identical conditions
and induced simultaneously. Western blotting was performed as described above to ensure that the
same signal was detected from each of the three samples, after normalizing for cell count.

Cell counts were done using a hemacytometer. Cells were grown in inducing conditions and
sampled every 20 minutes over a 3 hour period around the OD sampled for the Western blot data.
Cell count was plotted vs OD over this range and a good linear fit was achieved (Fig. S3). Using
this linear fit, we were able to calculate cell count for the ODs at which our cultures were sampled
for the Western blots.
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Figure S4: Control experiments were performed to ensure that there was no cross-talk between the inducers.
(a) Doxycycline is shown to not induce the expression of CFP (blue), but induces YFP (red). Addition of
arabinose increases YFP expression (green) due to slower overall ClpXP processing. (b) Arabinose does not induces
expression of YFP (red), but induces CFP (blue). Addition of doxycycline increase CFP expression (green).

Experimental Controls

Several control experiments were performed to ensure that the coordinated behavior in our two
experimental systems was due to degradation-based coupling and not just an artifact due to some
other phenomenon. First, the comparison of the tagged and untagged induction curves in the main
text served to demonstrate that the effects we are seeing are due to the tag and not just side effects
of over-expression. In the case of the dual-tunable signaling network, another primary concern was
ensuring that the two inducers did not interfere with the other promoters (i.e. that there is no
cross-talk between the two promoters). To test this, we induced cells with each of the two inducers
independently, and ensured that each color was only induced by the appropriate inducer (Fig. S4).
In panel a, it is clear that doxycycline strongly induces YFP (red) and not CFP (blue). When
arabinose is introduced in addition to doxycycline, the YFP levels increase (green), as CFP is now
being produced as well, causing an increased burden on ClpXP. The reverse is true as well; in
panel b, arabinose alone is seen to induce CFP (blue) and not YFP (red), however the addition of
doxycycline causes increased levels of CFP. This is further evidence of queueing theory, in addition
to a good control for crosstalk between the two promoters.

A similar control was performed for the dual-color synthetic circuit experiment. That is, the
oscillator strain was induced with AHL, and we saw no effect on period of the oscillator, indicating
that AHL and LuxR do not interfere with the ara/lac promoter. As another general control that
the addition of tagged proteins causes the observed effect, as opposed to it being some other artifact
of over expression, we tested the synthetic oscillatory system in conjunction with a high level of
a general, untagged protein (for this purpose, we used Pn25 driving TetR, untagged on a p15A
plasmid). When producing a large amount of untagged TetR (approximately 100,000 copies per
cell [1]) alongside the oscillator, we saw no difference between this and the normal behavior of the
oscillator. This control provides evidence that there is no apparent effect on period when expressing
untagged proteins. In addition, the experimental acquisition of the two induction curves (described
above), with the tagged and untagged versions of GFP, served to demonstrate that the effects
observed throughout the experiments were in fact due specifically to the abundance of tags, and
not simply side effects of general over-expression.
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Stochastic Theory - Model

The model considered in this paper involves production and degradation of protein types Xi, where
indices i = 1, 2, ...,m identify different protein types. Degradation occurs by the protein binding to
a protease P and subsequently being annihilated. Specifically, the model reactions are (rates are
rate constants, not including mass action terms)

Di

λi
GGGGGGA Xi +Di (1)

Xi

γ
GGGGGA ∅ (2)

Xi + P
η+

GGGGGGBFGGGGGG

η−
XiP (3)

XiP
µ

GGGGGA P (4)

XiP
γ

GGGGGA P (5)

where DNA Di produces protein Xi with rate constant λi, Xi is diluted (due to cell growth and
division) with rate constant γ, Xi binds to the protease P with rate constant η+, Xi unbinds from P
with rate constant η−, and P degrades Xi with rate constant µ. Reactions occur with exponentially
distributed times. For simplicity of results, we assume that dilution can act on Xi bound to P ,
though results can be generalized to when dilution does not act on Xi bound to P . We typically
assume results for a single effective protease (with an exception at the end of this section), though
single protease results can be generalized to many proteases [3]. We assume the count of each DNA
Di is 1 for simplicity.

Using reasonable approximations, we can further simplify Eqs. 1–5. The simplest approximation
is to suppose that η− ≈ 0 and that η+ is large, such that the reactions in Eqs. 2 and 5 collapse
to Eq. 2 and Eqs. 3–4 combine into a single degradation reaction, where the protease chooses one
particular protein and degrades it at rate µ; the latter has the same steady-state behavior as when
Eqs. 3-4 are replaced by the reaction

Xi

µ/n
GGGGGGGGA ∅ (6)

where n =
∑m

j=1 xj , and xi is the count of protein type Xi, as in the main text. Similar results
can be derived if both η+ and η− are sufficiently large. This leads instead to the approximate
degradation reaction

Xi

µ/(K + n)
GGGGGGGGGGGGGGGA ∅ (7)

where K = η−/η+ is a Michaelis-Menten parameter [3]. In the limit K → 0, the η− ≈ 0 system is
recovered. More details concerning the motivation and derivation of the reduced rates in Eqs. 6–7
appear in Refs. [3, 4].

The reduced system, using either Eq. 6 or Eq. 7 for the enzymatic degradation reactions Eqs. 3–4,
can be mapped (preserving the statistical distributions of protein counts) onto a stochastic queueing
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model. One such queueing model places each new Xi at a random position in a single queue, while
P processes (degrades) the protein at the head of the queue. Dilution can be added by allowing
“reneging,” whereby any member of the queue (including a member being processed by the server)
leaves at an average rate of γ.

In Fig. 2, a version of this stochastic queueing model is used to describe the σs stress response
system. We consider two substrates, mistranslated proteins, Xm and σs proteins, We suppose there
are 100 ClpXP “servers” that each have processing rate µ = 10 min−1. Binding of both substrates
to ClpXP is assumed fast (η+ = 108 min−1), and unbinding negligible (η− = 0 min−1). Cells are
assumed to divide every 20 min, such that γ = ln 2 min−1. Production of mistranslated proteins
occurs with rate λm, and the production of σs occurs with rate λσs . The system is overloaded when
λm + λσs > 100µ, balanced when λm + λσs = 100µ, and underloaded otherwise. The statistics
presented in Fig. 2 are derived from a large 32,000 ensemble of simulations. Single trajectories also
use an ensemble size of 1. Numerical simulations take advantage of custom code using the CUDA
framework for GPU acceleration.

Stochastic Theory - Results

We have carefully derived several relevant results for the above model in another study [3], which
applies the theory of multiclass queueing in the context of gene regulation. One key result is that
the steady state probability distribution P ({xi}) for the set of counts {xi} can be factored into
R(n), the probability distribution for the sum, times a multinomial distribution:

P ({xi}) = R(n)n!
m∏
j=1

p
xj

j

xj !
(8)

where pi ≡ λi/
∑m

j=1 λj . From this, it can be shown that moments of xi are given in terms of
moments of n. In particular,

〈xi〉 = pi 〈n〉 (9)
σ2
i ≡

〈
x2
i

〉
− 〈xi〉2 = pi(1− pi) 〈n〉+ p2

i (
〈
n2
〉
− 〈n〉2) (10)

The moments of n are less general and will depend on the particular model. With the reaction
scheme Eqs. 1–2, 7, we find

〈n〉 =
αδM(α+ 1, β + 1, δ)

βM(α, β, δ)
(11)

〈
n2
〉

= 〈n〉+
α (α+ 1)δ2

β (β + 1)
M(α+ 2, β + 2, δ)

M(α, β, δ)
(12)

with α ≡ K + 1, β ≡ (µ/γ) + α, δ ≡ Λ/γ, Λ ≡
∑m

i=1 λi, and M( · , · , · ) the confluent hypergeomet-
ric function of the first kind.

Deterministic Approximation for Mean Protein Counts

Though deterministic models do not address the many issues tied to noisy dynamics, e.g. cor-
relations between the counts of the protein species, certain aspects of queueing coupling can be
understood using a deterministic analog of the stochastic queueing model. Deriving approximately
deterministic processes from chemical reaction networks has a long history, and so we will be brief
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Figure S5: The deterministic approximation at steady state (see Eq. 13) can reasonably approximate the mean
concentration of proteins for the stochastic model at steady state, especially when the system is above balance or
when the Michaelis-Menten constant K is nonzero. Shown are results for a stochastic model and its deterministic
approximation for a system containing one enzyme with processing rate µ = 100 (AU). Proteins of type 2 are
produced at constant rate λ2 = 0.5µ, and dilution occurs with rate g = ln 2. The indirect response of mean
protein level 〈x2〉 is plotted as a function of the normalized production rate λ1/µ of protein 1. It is seen that
deviation of the deterministic approximation from the stochastic mean value is largest in the underloaded regime
(left of the dashed line) and smallest in the overloaded regime (right of the dashed line). Furthermore, increasing
K reduces the error in the underloaded regime. These results support the general trend that we find in our
analysis.

in the details of this section. We use this deterministic approximation primarily to accelerate some
of our model fitting routines, but final results in the main text are always derived from stochastic
models.

A deterministic approximation for mean protein levels xi in a stochastic model with multiple
servers is given by

dxi
dt

= λi − γxi −
µxi
K + n

(13)

where λi is a production rate constant, γ is the dilution rate constant, K is a Michaelis-Menten
molar constant, µ is the total enzymatic processing rate constant, and n =

∑m
j=1 xj is the mean

total protein count over all types. See [5] for mathematical details of derivation and validity for
similar systems. By comparison to numerical simulations, the deterministic model is a reasonable
approximation for the mean protein levels of the stochastic model (see Fig. S5). Deviation between
the deterministic model and stochastic mean levels is largest in the balanced and underloaded
regimes, but this deviation tends to be small when compared to the scale µ/γ, especially when the
constant K is nonzero.

The steady state solutions x(ss)
i to Eqs. 13 satisfy a relation similar to Eq. 9

x
(ss)
i = pin

(ss) (14)

where n(ss) is the total protein at steady state, and pi ≡ λi/Λ. For finite K

n(ss) =
Λ− µ−Kγ +

√
(Λ− µ)2 +Kγ(2Λ + 2µ+Kγ)

2γ
(15)
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which simplifies in the limit K → 0 to

n(ss) =
Θ(ζ)
γ

(16)

where ζ = Λ− µ, and Θ(·) is the integrated Heaviside step function: Θ(ζ) = ζ if ζ ≥ 0 and Θ(ζ) = 0
if ζ < 0. The solutions in Eqs. 14–16 reveal that components strongly interact when at least two
λi’s are simultaneously nonzero and Λ > µ.

Fitting of Steady State Model

Figs. 3b–d in the main text include fits of the stochastic model to the data. Below, we outline the
procedure to obtain fitted model parameters.

The fitted model results presented in Figs. 3c–d of the main text were derived through use of
a fitting algorithm to determine model parameters µ, γ, K, a Hill function parameterization for
λ1 (production rate of YFP for a given dox level), and a set of 3 values for λ2 (production rate of
CFP for a given arabinose level). At the end of this section, we revisit these best fit values of λ2

to find they are in reasonable agreement with single fluorescent protein expression data.
Curve fitting was implemented by a Metropolis algorithm. The energetic penalty used for the

algorithm was a weighted sum of the square distances between stationary state model mean values
(see Eqs. 9 and 11) and mean fluorescence data points. Due to the wide range of YFP fluorescence
magnitudes, we used linear distance when comparing CFP fluorescence and logarithmic distance
when comparing YFP fluorescence.

Parameters γ and K were not especially important for our fitting. We scaled time by the
doubling time τd (approximately 30 min.), such that the value of the dilution rate was fixed at
γ = ln 2 in natural units. Furthermore, we set K = 0 with little reduction in the goodness of fit,
and setting K ≤ 1000 or so did not drastically change the results.

We found that the deterministic queueing model’s stationary state approximates the overloaded
stochastic queueing model’s mean values well, and so we used the deterministic model’s results
for rapid fitting of the data, even though final results are generated from the stochastic model.
Arbitrary precision calculations in the Maple 11 software package (Waterloo Maple Inc.) confirmed
the stochastic model’s mean values were reasonably approximated by the deterministic model with
the assumption of overloading.

Using the data from the dox induction curves in Figs. 3c–d of the main text, λ1 was fit to a
shifted Hill function of the form

λ1 = B1 +D1
(([dox]/C1)H1)

(1 + ([dox]/C1)H1)
. (17)

with H1 = 3.0782, B1/µ = 0.0023, D1/µ = 2.3429, and C1 = 168.2114 ng/mL. We did not fit λ2

to a smooth curve, due to a small number of points being available, but we found best fit values
λ2/µ = 1.0373, 1.1093, 1.2683.

Other parameters used for Figs. 3c–d in the main text are as follows: Using doubling time
τd ≈ 30 min (for E. coli), µ = 7.589× 103 min−1, γ = ln 2, K = 0.

We tested consistency of the model fit in Figs. 3c–d by comparing results to the data in Fig. 3b.
Here, we found a continuous curve fit for the mean untagged (slow degrading) GFP fluorescence
multiplied by γ, providing a continuous parameterization of the apparent production rate of GFP.
Before fitting, to account for the difference between single molecule GFP and CFP fluorescence,
we scaled GFP fluorescence such that the three values of mean CFP fluorescence at low dox (in
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Figure S6: Pictured is the mean total protein at balance for the stochastic queueing model over a range of the
Michaelis-Menten constant K. This is approximated here by each protease (copy number L) processing at a
reduced rate µ/L and with Michaelis-Menten constant K. The balanced condition is defined here as when the
total protein production rate Λ equals the total processing rate µ, i.e. Λ = µ. Other parameters are determined
from the model fit in this section. We find the mean total protein at balance depends weakly on L for K > 0.
The theoretical protein level at K = 1000 can be considered a moderate perturbation compared to the typical
protein level for the experimental data in Fig. 3 of the main text. Note that even for zero K, queue lengths are
nonzero.

Figs. 3c–d) were closest in a least squares sense to the corresponding mean GFP fluorescences. We
fit the apparent production rate λ∗2 = γ < gfp > to the continuous function

λ∗2 = B2 +D2
(([ARA]/C2)H2)

(1 + ([ARA]/C2)H2)
. (18)

withH2 = 1.3660, B2/µ = 0.0665, D2/µ = 3.1039, and C2 = 1.0323 %. The difference ∆λ2 between
λ2 from panels c,d and λ∗2 from panel b are relatively minor, being ∆λ2/λ2 = 0.1093, 0.0144,−0.0850,
respectively, suggesting that the fits are consistent.

In Fig. 3b, using the parameterization λ∗2 and the model parameters determined by Fig. 3c–d, we
present the prediction for mean protein count as a solid red curve. This prediction is in agreement
with the data in Fig. 3b, suggesting that the data in Fig. 3b and in Figs. 3c–d are in agreement.

Though we found a small value of K (e.g. about a thousand or less) was consistent with
our model fit, the effect of larger K on the stochastic queueing model at the balance point was
considered (see Fig. S6).
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