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Online Table I. Activation and Signaling Pathways of Human Platelets Mediate Both Hemostasis and Inflammation1-17 
  

Agonist(s) or 
Ligand(s) 

Surface Receptor(s)  Receptor Class  Hemostatic Activities Inflammatory Activities 

Thrombin; Synthetic 
thrombin receptor 
activating peptides 
(TRAPs); Matrix 
metalloproteinase 1; 
others 

Protease-activated 
receptors (PAR1, PAR4 in 
humans; PAR3, PAR4 in 
mice) 

G Protein-
Coupled 
Receptor (GPCR) 

Inside-out signaling of integrin 
αIIbβ3; fibrinogen binding; 
aggregation; degranulation; clot 
retraction; TXA2 synthesis; 
tissue factor synthesis  

Release of chemokines and 
antibacterial peptides; 
surface translocation of P-
selectin; synthesis of IL-1β 
and tissue factor; 
formation of platelet-
leukocyte aggregates; 
triggering of platelet-
dependent leukocyte 
signaling; altered surface 
display of toll-like 
receptors 

ADP P2Y receptors (P2Y1, P2Y12) GPCR Triggering, amplification of 
platelet aggregation; 
stabilization of platelet 
aggregates; TXA2 synthesis; 
degranulation 

Formation of platelet-
leukocyte aggregates; 
synthesis of IL-1β 

Thromboxane A2 
(TXA2; 
stable TXA2 
mimetics)  

TXA2 receptor GPCR αIIbβ3 activation; fibrinogen 
binding; aggregation; adhesion; 
potentiation of thrombin 
signaling 

Synthesis of IL-1β; release 
of CD40L 
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Platelet-activating 
factor (PAF); PAF-
like oxidatively 
modified 
phospholipids 

PAF receptor (PAFR) 
(Human but not mouse 
platelets express PAFR) 

GPCR Weak agonist for aggregation, 
adhesion; synergistic 
amplification of platelet 
activation by thrombin, ADP 

Potent agonist for 
formation of platelet-
neutrophil and platelet-
monocyte aggregates; 
IL-1β synthesis 

Collagen GPVI 
(Collagen is also recognized 
by integrin α2β1 on 
platelets) 

Immunoreceptor  Association with GPIb-IX-V; 
activation of αIIbβ3; 
degranulation; release of 
inorganic polyphosphates 
(PolyP) with procoagulant and 
proinflammatory actions 

Synthesis of IL-1β (not yet 
known if this is mediated 
by GPVI, integrin α2β1, or 
both); shedding of 
proinflammatory 
microparticles; release of 
PolyP 

Fibrinogen (Fg)  Integrin αIIbβ3 (integrin αIIbβ3 
also binds other ligands, 
including fibrin, fibronectin, 
von Willebrand factor, 
vitronectin, and 
thrombospondin) 

Integrin Outside-in signaling triggering 
or contributing to: tight platelet 
adhesion and spreading on 
extracellular matrix; TXA2 
synthesis; fibrin clot 
stabilization and retraction; 
generation of platelet 
procoagulant activity and 
microparticles; degranulation; 
synergistic signaling with 
thrombin, other agonists; 
signaling to translation control 
pathways 

Degranulation; 
amplification of signal-
dependent translation  

This list of agonist – and receptor-mediated hemostatic and inflammatory activities and responses is illustrative and not comprehensive. 
Additional examples, and details of intracellular pathways and mechanisms, are included in the supplemental references. Other inflammatory 
activities of platelets induced by pathways or agonists that trigger primary hemostatic responses are likely to be discovered.  
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Online Table II. Functional Responses of Human and Mouse Platelets Induced by LPS In Vitro18-28 
 

Platelet Preparation LPS Functional Response(s) Reference 

Washed human platelets S. minn. R595, 
10-250 μg/mL 

Potentiation of serotonin release 
induced by IgG aggregates or 
immune complexes 

18

Human PRP E. coli 0111:B4, 
1-100 ng/mL 

Did not directly induce or 
potentiate aggregation triggered 
by ADP, epinephrine (epi), or 
arachidonic acid (AA) 

19

Human whole blood E. coli 0111:B34, 
0.1-100 ng/mL 

Potentiated aggregation triggered 
by ADP, epi, AA; primed platelet-
PMN aggregate formation; primed 
PAF synthesis 

19

Human platelet rich plasma 
(PRP) 

E. coli 0111:B4, 
≤10 ng/mL 

Did not directly induce aggregation 
or P-selectin translocation, or 
potentiate these responses to ADP, 
PAF, collagen 

20

Gel filtered mouse platelets in 
buffer or with 10% autologous 
serum 

E. coli 0111:B4, 
5 μg/mL 

Did not induce P-selectin 
translocation (30 min); induced 
adhesion of platelets to 
immobilized fibrinogen under flow 

21
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Human PRP or washed human 
platelets 

Several E. coli LPS types;  
1 μg/mL diluted in plasma 

PAC-1 binding; CD40L 
upregulation; binding of 
fibrinogen; adhesion to cultured 
microvascular endothelial cells (no 
adhesion of washed platelets) 

22

Isolated human platelets in 
Hank’s Balanced Salt Solution 

E. coli 0111:B4,  
5-100 μg/mL 

Did not induce platelet aggregation 
(~5 min) or P-selectin expression: 
induced attachment of platelets to 
neutrophils immobilized on 
protein-coated coverslips under 
flow; induced neutrophil 
extracellular trap (NET) formation 
and neutrophil degranulation 

23

Human platelets isolated by 
negative immunoselection; PRP 

E. coli 0111:B4, 
10 ng – 1 μg100 ng/mL in 0.5% 
serum or recombinant 
CD14+LBP 

Did not directly induce rapid shape 
change or aggregation; augmented 
rapid (5 min) ADP-induced 
aggregation in PRP; induced time-
dependent actin polymerization, P-
selectin translocation, P-selectin-
dependent platelet-neutrophil 
interaction, CD40L upregulation (1-
3 hr); time-dependent splicing of 
IL-1β pre-mRNA, IL-1β protein 
synthesis 

24
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See main text and cited references for additional details 

Washed human platelets or PRP Several different LPS types; 
 (1-100 μg/mL) 

Did not induce rapid aggregation 
of washed platelets but 
potentiated aggregation of 
platelets stimulated with 
subthreshold concentrations of 
thrombin, collagen; directly 
induced ADP release (10 min), P-
selectin translocation (30 min) 

25

Washed mouse platelets E. coli 0111:B4, 
10 μg/mL 

Potentiated thrombin-induced 
aggregation, secretion 

25

Human platelets isolated by 
negative immunoselection 

E. coli 0111:B4,  
100 ng/mL + rCD14, LBP 

Shedding of microparticles; splicing 
of IL-1β pre-mRNA, synthesis of IL-
1β protein; signaling of cultured 
endothelial cells 

26

Human platelets isolated by 
negative immunoselection 

E. coli 0111:B4,  
10 ng/mL – 1 μg/mL 

Did not induce P-selectin 
translocation (60 min); induced 
splicing of tissue factor (TF) pre-
mRNA and generation of TF 
procoagulant activity (30 min – 4 
hr) 

27

Human PRP LPS from S. typhimurium, 1 
μg/mL 

Did not induce thrombin 
generation. In contrast, histones 
triggered platelet activation  and 
thrombin generation that were 
partially blocked by anti-TLR4 
antibody. 

28
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Online Table III. Activated Human Platelets Have Diverse Mechanisms for Release or Surface Display of Inflammatory Factors1-3, 16, 29-32 
 

Inflammatory Factor Mechanism of Release or Surface Display Inflammatory Activities 

TxA2 Rapid synthesis and paracrine release See Table 1 

PAF Rapid synthesis; retained on platelet plasma 
membrane 

See Table 1 

Fibrinogen Degranulation (alpha granules) and 
secretion 

See Table 1 

Platelet factor 4 (PF4; CXCL4) Degranulation (alpha granules) and 
secretion 

Chemotactic for neutrophils, monocytes; 
promotes monocyte survival and 
differentiation to macrophages; 
heterodimerization with RANTES to promote 
monocyte recruitment to endothelium; T-
cell and monocyte trafficking, cytokine 
production in experimental cerebral malaria; 
plasmodium killing 

RANTES (CCL5) Degranulation (alpha granules) and 
secretion 

Chemotactic for eosinophils ; signaling of 
monocyte inflammatory gene expression; 
recruitment of T-cells to endothelium; 
heterodimerization with PF4 with 
recruitment of monocytes to endothelium 
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P-selectin Translocation to platelet plasma membrane 
from alpha granules 

Binding to P-selectin glycoprotein 1 (PSGL-1) 
on neutrophils, monocytes, lymphocytes, 
and dendritic cells, mediating platelet-
leukocyte interactions; signaling of gene 
expression and other responses of 
leukocytes by engaging PSGL-1 

Serotonin Degranulation (dense granules) and 
secretion 

Modulation of endothelial barrier function; 
activates monocytes and prevents monocyte 
apoptosis; accessory signal for T-cells; alters 
T-cell trafficking  

Inorganic Polyphosphates (PolyP) Degranulation (dense granules) and release PolyP trigger bradykinin generation in 
plasma and bradykinin-dependent increased 
capillary permeability, plasma leakage, and 
edema  

ADP Degranulation (dense granules) and 
secretion 

Alterations in endothelial barrier function; 
modulation of monocyte activation, 
apoptosis; accessory signaling of T-cell 
activation 

Human β-defensin 1 Release from novel cytoplasmic 
compartment in response to S. aureus  
α-toxin 

Induction of neutrophil extracellular trap 
formation; bacterial killing 

TLR9 Translocation from novel cytoplasmic 
compartment 

Signaling and platelet activation if engaged 
by bacterial, viral DNA or other microbial 
factors 
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CD40 ligand (CD40L; CD154) CD40L present on plasma membrane and in 
subcellular compartment(s) in basal state; 
cleavage of transmembrane CD40L at 
plasma membranes of activated platelets, 
release 

Signaling of lymphocytes, monocytes, 
endothelial cells, platelets via CD40; 
adaptive immune responses; immune 
amplification 

Interleukin 1β (IL-1β) Signal-dependent pre-mRNA splicing and 
mRNA translation; translocation to plasma 
membranes of activated platelets; release in 
microvesicles and in soluble form 

Activation of endothelial cells resulting in 
adhesion molecule and chemokine 
expression; induction of vascular smooth 
muscle cell cytokine production; triggering of 
chemokine release by synovial fibroblasts 

 
Additional details regarding mechanisms and inflammatory activities of these platelet factors are included in the main text and cited references. 
This is an abbreviated list, and represents only a small fraction of the factors released or displayed by activated platelets.   
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Online Table IV. Examples of Signal Dependent Translation by Human Platelets that Yields Proteins with Relevance to Thrombosis and 
Inflammation1, 2, 12, 27, 33-44 

Experiments involving metabolic labeling of newly-synthesized proteins with radiolabeled amino acids and separation of the products by 
electrophoresis indicate that multiple proteins are produced when human platelets are activated under appropriate conditions. Many of these 
products are not yet identified, but others in addition to those on this list have been reported 36, 40, 44. Also see main text and references. 

mRNA or Pre-mRNA Transcript Mechanisms of Signal-
Dependent Translation 

Protein Product Functional Response(s)  

Bcl-3 Translation of constitutive 
mRNA in activated platelets 
controlled by mammalian target 
of rapamcyin (mTOR) 

B cell lymphoma 3  
(Bcl-3)  

Clot retraction in vitro 
 

PAI-1 Basal expression that is 
enhanced by thrombin-
stimulated translation of PAI-1 
mRNA 

Plasminogen activator  
inhibitor-1 (PAI-1) 

Release of PAI-1; association 
with tissue plasminogen 
activator in vitro 

Il-1β Signal-dependent splicing of 
pre-mRNA in activated platelets 
controlled by cdc-like Kinase 1 
(CLK1); translation of the 
mature, processed mRNA 
transcript 

IL-1β  Release of Il-1β in 
microparticles, solution; 
endothelial signaling in vitro  
(Platelet-derived IL-1β is 
reported to have inflammatory 
activities in vivo. See text.) 

TF Same as for Il-1β Tissue factor (TF) Release of TF in microparticles; 
clot time shortening in vitro 

TIMP-2 Translation of constitutive 
mRNA by activated platelets 

Tissue inhibitor of 
metalloproteinase 2 (TIMP2) 

Time-dependent secretion of 
TIMP2 in vitro; Functional 
activity not tested 
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Online Table V. Platelet Activities in Selected Inflammatory Vasculopathies 

Syndrome, Disorder, or Disease Involving Vascular Inflammation Platelet Activities in Clinical Studies and/or Experimental Models

Sepsis 1-3, 23, 27, 45-73 Platelet activation may be ubiquitous in clinical sepsis. Platelet-fibrin 
thrombi and platelet sequestration in microvessels are central 
manifestations. Thrombocytopenia  (multifactorial) is common and is 
a prognostic feature. Disseminated intravascular coagulation (DIC) 
occurs. Microbial factors (LPS, other TLR ligands) and host factors 
generated in sepsis (thrombin, PAF, others) can directly activate 
platelets (see Supplemental Tables 1 and 2). Reported platelet 
activities include: variable aggregation, adhesion, secretion 
depending on the clinical study; formation of platelet-neutrophil and 
platelet-monocyte aggregates; enhancement of adhesion of 
neutrophil aggregates to human endothelium in vitro; expression of 
tissue factor mRNA and tissue factor activity by platelets from septic 
subjects. Plasma from septic patients induces binding of platelets to 
neutrophils and NET formation in vitro, consistent with triggering of 
NET formation by LPS-stimulated platelets (Table 2). Platelet-
neutrophil binding induced by plasma from septic subjects was 
blocked by an inhibitor that interrupts binding of MD2 to TLR4. 
Recent observations indicate that platelet-monocyte aggregates 
correlate with negative outcomes in elderly patients with sepsis 
(Rondina M, et al, manuscript submitted). Studies of controlled 
challenge of human volunteers with LPS are consistent with activation 
of platelets in sepsis. Mouse and other animal models are generally 
consistent with clinical studies of human platelets in sepsis, and 
indicate that platelets mediate microvascular thrombosis, NET 
formation, increased endothelial permeability, and lymphoid 
apoptosis.
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Malaria1, 2, 31, 32, 74-90 Thrombocytopenia is common in human malaria caused by 
Plasmodium falciparum, P. vivax, and P. knowlesi. Inflammatory 
vasculopathy is a feature of severe malaria, which includes cerebral 
and pulmonary malaria and multiple organ failure. Cytoadherence 
(“sequestration”) of parasitized red blood cells (PRBC) and 
accumulation of platelets and leukocytes – particularly monocytes – 
with generation of cytokines, dysregulation of hemostasis, and 
endothelial barrier disruption are thought to contribute to the 
vasculopathy. Platelets sequestered in microvessels in contact with 
leukocytes, PRBC, and a hemoglobin-derived malarial toxin 
(hemozoin) have been observed in autopsy specimens. Platelets bind 
to PRBC and form aggregates in vitro; this “clumping” is associated 
with severe malaria. Platelets act as cellular bridges between PRBC 
and activated human endothelial cells in vitro. PRBC (P. falciparum) 
activate human platelets in vitro, inducing binding of PAC-1 antibody, 
surface translocation of P-selectin, PF4 release. PF4 has been 
detected in plasma samples from patients infected with P. 
falciparum; few other studies of patient samples have been reported. 
Mouse models of severe malaria have controversial features, but 
generally support the idea that platelets contribute to malarial 
vasculopathy as immune effectors. While there is evidence that 
platelets contribute to vascular inflammation in severe malaria they 
may be protective and have anti-parasite activities early in the 
infection.
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Dengue1, 2, 91-102 Severe thrombocytopenia, dysregulated coagulation, bleeding, 
capillary leak, systemic inflammation with increased plasma 
cytokines, and/or systemic hypoperfusion occur in some patients, 
resulting in syndromes that have been called dengue hemorrhagic 
fever and dengue shock syndrome. Platelet-monocyte and platelet-
neutrophil aggregates form in the blood of patients and non-human 
primates infected with dengue. In vitro experiments indicate that the 
dengue flavivirus directly infects human platelets but precise 
contributions of platelets to vasculopathy and vascular instability in 
severe dengue syndromes are under investigation.

Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome 
(ARDS)1-3, 103-119 

Increased pulmonary capillary permeability and diffuse alveolar 
inflammation are hallmarks of ALI/ARDS, which are common causes 
of critical illness. Systemic vascular involvement and multiple organ 
failure are frequent complications.  Sepsis is a common precipitating 
condition. (Also see text and Supplemental Table 2.) Platelets, 
leukocytes, and fibrin accumulate in lung microvessels in patients 
with ALI/ARDS based on imaging and autopsy studies. Clinical 
observations and experimental models indicate that platelets 
contribute to disrupted alveolar capillary barrier function, alveolar 
edema, sequestration of neutrophils and monocytes in pulmonary 
vessels, microvascular thrombosis, and alveolar inflammation. See 
also Transfusion-related ALI, below.
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Transfusion-related Acute Lung Injury (TRALI)1, 2, 104, 107, 120-126 TRALI is a particular syndrome of ALI/ARDS that occurs within hours 
of transfusion of blood products, including platelets. LPS and platelets 
or platelet products trigger ALI in “two hit” animal models. CD40L in 
stored human blood products may prime neutrophils for endothelial 
injury based on in vitro studies. Platelets and neutrophils are 
sequestered and NETs form in lungs of mice with TRALI induced by 
challenge with an MHC antibody after LPS priming; targeting platelet 
activation with aspirin or inhibitors of integrin αIIbβ3 reduces 
accumulation of NETs in alveolar vessels, accumulation of NET-
associated platelets, lung edema, and pulmonary vascular 
permeability in this model. TxA2 (see Supplemental Table 1) mediates 
increased permeability of LPS-primed endothelial cells challenged 
with NETs in vitro. 

Deep Vein Thrombosis (DVT)127-139 DVT and its complications, including pulmonary thromboembolism 
(PTE), are common vascular disorders. Inflammatory syndromes and 
neoplasia are frequent precipitating conditions. DVT and PTE are 
usually acute or subacute conditions, but chronic sequelae including 
post-phlebitic syndrome and chronic thromboembolic pulmonary 
hypertension also occur. A variety of clinical and experimental 
observations indicate that DVT has inflammatory components and 
may in many cases contribute to inflammatory vasculopathy and that 
platelets are involved. Activated platelets, platelet-leukocyte 
aggregates, and platelet microparticles have been detected in the 
blood of patients with DVT, venous stasis ulceration, and/or chronic 
thromboembolic pulmonary hypertension. Animal models 
demonstrate the inflammatory nature of clots and critical 
contributions by platelets, and that platelets and leukocytes act 
together to promote coagulation. A recently-described mouse model 
indicates that interactions between platelets, monocytes, and 
neutrophils together with tissue factor synthesis and NET formation 
drive venous thrombosis. Clinical studies utilizing radiolabeled 
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fluorodeoxygluclose and positron emission tomography (PET) imaging 
demonstrate that clots in DVT are metabolically active, consistent 
with active contributions by inflammatory effector cells.

Sickle Cell Disease Vasculopathy and Vaso-Occlusion123, 140-148 
 
 
 
 
 
 
 
 
 
 
 
 

Sickle cell vasculopathy has inflammatory components and involves 
accumulation of myeloid leukocytes and platelets in vessels, in 
addition to sickled erythrocytes. Activated endothelial cells can 
recruit adherent leukocytes in murine models of this disease; the 
leukocytes can then secondarily capture erythrocytes and platelets, 
leading to vascular occlusion. Mice in a sickle cell disease model have 
increased pulmonary and systemic inflammatory responses to LPS. 
Platelet-neutrophil aggregate formation mediated by P-selectin 
occurs in mice in a sickle cell model and patients with sickle cell 
disease; hypoxia and reoxygenation induces additional platelet-
neutrophil aggregates to form and parallel activation of both platelets 
and neutrophils. The platelet transcriptome is altered in human sickle 
cell disease, resulting in changes in the arginine metabolic pathway.

Rheumatoid Vasculopathies and Vasculitis1-3, 149-158 Clinical and experimental evidence indicates that local, regional, and 
in some cases systemic vasculopathies are key features of rheumatic 
diseases. Triggers for vascular inflammation in rheumatic syndromes 
alter vessels in an organ – and syndrome – specific fashion. Many 
rheumatic syndromes are associated with increased frequency of DVT 
and/or accelerated atherogenesis and complications of 
atherosclerosis. Circulating activated platelets and markers of platelet 
activation have been detected in blood samples from patients with 
several rheumatic conditions. The platelet transcriptome is altered in 
patients with systemic lupus erythematosus (SLE), and alterations in 
Type 1 interferon-regulated genes and proteins are associated with 
development of vascular disease. Platelet-derived CD40L may be a 
key immune modulator in SLE. In a study with relevance to 
progressive systemic sclerosis involving patient samples and rodent 
models, platelet-derived serotonin was reported to link vascular 
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disease and tissue fibrosis. Platelets likely contribute to a variety of 
syndromes of microangiopathy, vasculitis, and inflammation-induced 
thrombosis, but many are incompletely studied because they are 
relatively uncommon.

Transplant Vasculopathies159-163  Platelets contribute to the pathogenesis of transplant vasculopathy 
and may be involved in acute organ rejection and chronic allograft 
vasculopathy. Platelets and fibrin in vessels were reported in tissue 
from patients with hyperacute and acute rejections, and platelet 
aggregates were observed in capillaries in antibody-mediated and 
cell-mediated renal transplant rejection in clinical studies. 
Interactions of platelets with monocytes, B and T lymphocytes, and 
dendritic cells may be involved, depending on the specific syndrome 
and time after transplantation. Experimental observations indicate 
that platelet-endothelial interactions dependent on complement 
occur, and that platelets recruit leukocytes to areas of alloantibody 
deposition and mediate sustained leukocyte-endothelial interactions 
in vivo. In a murine model, human platelet-derived CD40L induced 
endothelial activation and acute rejection of cardiac allografts. In a 
porcine-primate renal xenotransplant model, platelet-leukocyte 
aggregates formed, platelet aggregates and fibrin were detected in 
kidney vessels, and expression of tissue factor by recipient platelets 
triggered consumptive coagulopathy.

Atherosclerosis and  Predisposing Conditions2, 3, 5, 14, 164-178 Atherosclerosis is a chronic inflammatory vasculopathy. Contributions 
of platelets to initiation and progression of atherosclerotic lesions 
and to atherothrombotic complications are well-known and have 
been extensively reviewed. Emerging evidence indicates that 
platelets may link inflammation and progressive vascular involvement 
in predisposing conditions that include diabetes, obesity, and 
smoking.
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Acute Coronary Syndromes (ACS), Coronary Intervention, Reperfusion 
Vasculopathy2, 5, 9, 166, 179-191 

Platelets are key effector cells in coronary thrombosis resulting from 
atherosclerotic plaque rupture, a pivotal vascular event that 
precipitates myocardial infarction and other ACS. Inflammatory and 
hemostatic activities of platelets contribute to atherothrombotic 
sequellae. Megakaryocytes and platelets are reported to be 
hyperactive in ACS. Circulating platelet-monocyte aggregates are an 
early marker of acute myocardial infarction, and are a sensitive index 
of platelet activation in experimental and clinical ACS and coronary 
intervention. Platelets also bind to and interact with neutrophils in 
ACS. Platelet-leukocyte interactions can induce cytokine expression in 
ACS, and can mediate systemic inflammation in these disorders. 
Platelet expression of the transcript for myeloid-related protein-14 
may be a novel signature that identifies acute coronary events. 
Integrin αIIbβ3 is involved in platelet-leukocyte interactions and 
surface of expression of leukocyte integrins in ACS. Beneficial effects 
of anti-platelet therapies, which are central interventions in the 
management of these complications of atherosclerosis, may result 
from interruption of inflammatory activities of platelets in addition to 
inhibition of coronary thrombosis. Platelets also have key activities in 
iatrogenic vasculopathy after interventions to open obstructed 
coronary vessels such as angioplasty and stenting; platelets 
accumulate rapidly after coronary angioplasty or stent placement and 
bind leukocytes. Platelets are central in the pathogenesis of 
restenosis together with leukocytes and vascular wall cells. Platelets 
also contribute to reperfusion injury after coronary intervention and 
following cardiopulmonary bypass,. These contributions likely 
involving inflammatory activities of these cells.
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Cerebrovascular Disease and Stroke9, 192-206 Platelet activation likely contributes in a variety of ways to vascular 
inflammation, thrombus formation, and vascular occlusion in 
cerebrovascular disease, and to thromboinflammatory amplification 
in cerebral ischemia and stroke. Analysis of clinical samples indicates 
that platelets are activated in patients with acute, subacute, and 
remote cerebrovascular ischemia and intracerebral hemorrhage. 
Platelet activation and platelet-leukocyte interactions occur and may 
be critical in acute stroke preceded by infection. Platelet-monocyte 
aggregates form in cerebrovascular disease, and in vitro experiments 
indicate that interaction of platelets, monocytes, and exposed 
collagen can induce metalloproteinase expression at sites of 
cerebrovascular plaque rupture. Platelet induced metalloproteinases, 
cytokines that are induced by platelet-monocyte interactions such as 
monocyte chemotactic protein 1, and CD40L-CD40 may be key 
molecular effectors and pathways that can be modified by targeted 
intervention in both platelets and leukocytes. The blood 
transcriptome is altered in stroke, potentially reflecting changes in 
the platelet transcriptome in part.  Increased formation of platelet-
monocyte aggregates and CD40L levels were associated with 
worsened outcomes after ischemic stroke in a recent report. 

Atherosclerotic Peripheral Arterial Disease207, 208 Contributions of platelets to peripheral vascular diseases have been 
recently reviewed. Altered platelet reactivity has been detected in a 
large number of clinical studies, with indices and assays including 
enhanced responses to thrombin, ADP, or collagen; spontaneous 
platelet aggregation; circulating platelet-leukocyte aggregates; and 
basal P-selectin display and/or activation of integrin αIIbβ3. Some 
studies include patients with diabetes or other predisposing 
conditions.
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Thromboangiitis Obliterans209-214 Thromboangiitis  obliterans (TAO), or Buerger’s Disease, is an 
uncommon inflammatory vasculopathy of arteries and veins linked to 
smoking that usually affects young adults and is a cause of 
amputation and other morbidities. Small studies suggest that platelet 
activation and shedding of platelet microparticles are associated with 
exacerbation of TAO. Analogs of prostacyclin – a major inhibitor of 
platelet activation – are beneficial in management of TAO. Platelet 
activation and platelet-leukocyte aggregation mediated by PAF-like 
oxidized lipids occur in experimental animals subjected to cigarette 
smoke, suggesting potential mechanisms to drive vascular 
inflammation in TAO. Human cigarette smokers were reported to 
have increased CD40L on platelets, increased plasma CD40L, and 
circulating platelet-monocyte aggregates. Nevertheless, individual 
mechanistic contributions of platelets and leukocytes are not yet 
defined in this vasculopathy.
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