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SUPLEMENTARY MATERIALS for Chubykin et al.: 

“Activity-Dependent Validation of Excitatory vs. Inhibitory Synapses 

by Neuroligin-1 vs. Neuroligin-2” 

 
SUPPLEMENTARY TEXT 

 We analyzed EPSCs in acute slices and in cultured neurons prepared from littermate wild-type and 

NL1 KO mice to test whether the deletion of NL1 alone would induce a change in synaptic strength. 

However, we found that the NL1 deletion had no effect on EPSC size in slices or in dissociated cultures. To 

test whether this result occurs because the amount of synaptic network activity is insufficient to reveal a 

contribution of endogenous NL1 to activity-dependent synapse modulation, we investigated the effect of 

chronic treatments with picrotoxin (to activate spontaneous EPSCs), AP5, or a combination of picrotoxin and 

AP5 on EPSCs in cultured neurons (Suppl. Fig. 7). The chronic picrotoxin treatment in this experiment is 

expected to enhance the excitatory drive in the culture, which might reveal differences between NL-1 KO 

and wild-type neurons as a function of AP5. However, we observed no differences between wild-type and 

KO neurons, disproving this hypothesis. 

 

SUPPLEMENTARY METHODS 

 Constructs. All NL1 expression vectors encode rat NL1 with inserts in splices sites A and B 

(Biederer et al., 2002; Sara et al., 2005). pCMV5-NL1 encodes full-length rat NL1 containing splice sites A 

and B. Generated by cloning the NL1 cDNA into the Bgl II/Sal I sites of pCMV5. pCMV5-NL1-EGFP 

encodes full-length rat NL1. Generated by cloning a PCR fragment containing the coding sequence of EGFP 

into the Rsr II site of pCMV5-NL1. pNL1-ΔC-EGFP encodes rat NL1, truncated at Rsr II site after the codon 

corresponding to T776 and fused to EGFP followed by a stop codon. It was generated from pCMV5-NL1-

EGFP by cloning the Bgl II/BsrGI fragment of NL1-EGFP into the Bgl II/BsrGI sites of EGFP-N1 

(Clontech). pcDNA3-AchE-NL1-EGFP generated by replacing extracellular part of NL1 ending with H634 

with mouse AchE truncated at L539. Afl II sites were introduced in mouse AchE after the codon 

corresponding to L539 and in rat NL1 before the codon corresponding to H634 using QuickChange site 

directed mutagenesis (Stratagene). Subsequently, C-terminal part of NL1 was cloned into the Afl II/Xba I 

sites of pcDNA3-AchE. EGFP fusion was created by cloning a PCR fragment containing the coding 

sequence of EGFP into the Rsr II site of pcDNA3-AchE-NL1 (Chubykin et al., 2005). pCMV5-NL1-R473C-

EGFP encodes mutant NL1 with R473C mutation corresponding to human NL3 R451C autism mutation. 

Generated by QuickChange site directed mutagenesis (Stratagene) using rat NL1 as a template. EGFP fusion 

was created by cloning a PCR fragment containing the coding sequence of EGFP into the Rsr II site of 

pCMV5-NL1-R473C. pCMV5-NL2-Venus encodes full-length rat NL2. PCR fragment containing the 
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coding sequence of Venus was cloned into the RsrII site, which was introduced in rat NL2 after the codon 

corresponding to L762 using QuickChange site directed mutagenesis (Stratagene). pPDGF-EGFP-β-Actin 

encoding EGFP-tagged full-length β-Actin, was kindly provided by Y.Goda (University College, London, 

UK)(Morales et al., 2000). pCMV5-SynCAM encodes full-length mouse SynCAM cloned into EcoRI site of 

pCMV5(Biederer et al., 2002). pCMV5-SynCAM-NL1-IRES-ECFP encodes extracellular part of SynCAM 

fused to C-terminal part of NL1(Sara et al., 2005) . pCMV5-NL1-SynCAM-IRES-ECFP encodes 

extracellular part of NL1 fused to C-terminal part of SynCAM(Sara et al., 2005). 

 Electrophysiological analyses of NL1 KO mice were performed in acute hippocampal and cortical 

slices at room temperature (~22 °C) from littermate mice that were either homozygous NL1 KO mice, or 

contained one or two wild-type NL1 alleles. All recordings were performed in standard artificial 

cerebrospinal fluid containing (in mM): 126 NaCl, 3 KCl, 1.25 NaH2PO4, 2 MgSO4, 26 NaHCO3, 10 

dextrose, and 2 CaCl2, and saturated with 95% O2/5% CO2 (final pH of 7.4). The pipette solution for the 

whole-cell recordings contained (in mM): 125 Cs-methanesulfonate, 1 CsCl, 3 NaCl, 10 HEPES-NaOH pH 

7.25, 2.5 BAPTA, 4 ATP-Mg, 0.3 GTP-Tris, 14 phosphocreatine-Tris, 10 sucrose (290 mOsm); in all 

recordings, seals with a series resistance of >13 MΩ were excluded. Two types of experiments were 

performed: 1. Measurements of EPSCs. Whole-cell recordings were performed from CA1 pyramidal neurons 

in slices from mice at P19-21 in the presence of 100 μM picrotoxin to prevent disynaptic inhibitory 

responses. Most of the CA3 region was removed to prevent polysynaptic responses. An extracellular 

stimulating electrode (2 cond. cluster electrode, FHS, Bowdoin, Maine) was positioned in the stratum 

radiatum ~75 μm away from the patched neuron. Measurements were then performed in four stages: a. We 

first tested whether extracellular stimulation produced monosynaptic responses using a holding potential of -

70 mV and approximately -30 mV to ensure that disynaptic inhibitory responses did not occur; b. we then 

optimized the stimulation strength to elicit AMPA-receptor mediated responses of -50 to -100 pA (current 

pulses used were 50-400 μA); c. using this stimulus strength, we measured AMPA responses in 5-10 stimuli 

applied at 0.125 Hz with a postsynaptic holding potential of -70 mV; and d. finally, we measured 

postsynaptic NMDA-receptor mediated responses in the same cell by switching the postsynaptic holding 

potential to +40 mV. AMPA-mediated responses were monitored as the peak amplitude; NMDA-receptor 

mediated responses as the amplitude 40 ms after the stimulus to ensure that only NMDA-receptor dependent 

currents were measured. Moreover, in two experiments AP5 was shown to completely block the measured 

NMDA-receptor dependent currents, validating the measurements. 2. Measurements of IPSCs were 

performed in paired recordings in layer 4 of the somatosensory cortex (within barrel hollows) in acute slices 

obtained from P14-16 mice. Whole-cell recordings were established in neighboring presynaptic inhibitory 

fast-spiking and postsynaptic regular-spiking neurons (interior pipette solution: (mM): 130 K-

methanesulfonate, 3 KCl, 1 NaCl, 10 HEPES-NaOH pH 7.25, 0.1 EGTA, 4 ATP-Mg, 0.3 GTP-Tris, 14 

phosphocreatine-Tris, 10 sucrose (290 mOsm). Of 24 patched wild-type pairs, 12 had inhibitory connections 
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and 17 had excitatory connections; of 20 patched NL1 KO pairs, 10 had inhibitory connections and 15 

excitatory connections; no presumptive inhibitory neuron ever elicited an EPSC, and no presumptive 

excitatory neuron an IPSC. This together with the previous literature suggests that the vast majority of 

postsynaptic neurons were excitatory stellate neurons, and the fast-spiking presynaptic neurons neocortical 

inhibitory neurons (Gibson et al., 1999). Recordings were in voltage clamp with the presynaptic fast-spiking 

neuron held at -60 mV and the postsynaptic excitatory neuron held at -55 mV. Reversal for IPSCs were ~-75 

mV. Junction potentials were 9 mV. IPSCs were measured in response to a 20 Hz stimulus train of 8 evoked 

presynaptic action potentials, and the absolute amplitude and short-term synaptic plasticity of responses were 

measured. The failure rate of unitary IPSCs was 9 ± 3% for wild-type slices (n=12), and 6 ± 4% for 

NL1 KO slices (n=10; data are means ± SEMs; p=0.57). 

Immunocytochemistry, image acquisition and analysis. Neurons were fixed in cold 100% 

methanol, permeabilized in 0.1% saponin, and incubated with primary and secondary antibodies in PBS with 

3% nonfat milk and 0.1% saponin. Immunolabeling of presynaptic terminals and of dendrites was performed 

with rabbit polyclonal antibodies to synapsin (E028)(Rosahl et al., 1993) and mouse monoclonal antibodies 

to MAP2 (Sigma Aldrich), respectively, using Alexa Fluor 633 goat anti-rabbit and Alexa Fluor 546 goat 

anti-mouse antibodies (Molecular Probes) as secondary antibodies. Images were acquired with a 63x 

objective using a 4.5x zoom in a Leica TCS2 conlocal microscope with identical settings applied to all 

samples in an experiment. Images were presented in three colors: presynaptic terminals were visualized via 

synapsin staining represented in red channel, dendrites via MAP2 staining in blue channel, and spines via the 

EGFP fluorescence (either from the transfected EGFP-tagged NL1 proteins or from co-transfected EGFP-

tagged β-actin). Stacks of z-section images were converted to maximal projection images and analyzed 

blindly with the NIH Image/ImageJ program. Channels corresponding to EGFP and synapsin signals were 

thresholded to outline spines and presynaptic terminals correspondingly. Area size, fluorescent intensity and 

density of spines and presynaptic terminals per 50 μm of dendrite were measured using the “Analyze 

particle” module of the ImageJ program. All samples were coded and analyzed blindly. Each experiment was 

performed at least three times with 300-1000 spines from 6 to 10 neurons analyzed per condition.  
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Supplementary Table 1 
Summary of previous morphological and electrophysiological studies 

of neuroligins in transfected neurons 
 

Publication Target protein Immunocytochemistry Electrophysiology 

Dean et al., 2003 Transfection NL1 NL1 increases density of 

synapsin, PSD-95 and GluR2/3 

puncta  

Not tested 

Chih et al., 2004 Transfection NL3, NL4, 

NL3 R451C, NL4 D396X 

NL3, NL4 increase synapse 

density; NL4 D396X has no 

effect, NL3 R451C has no effect, 

except in some cells with high 

level of expression where synapse 

density is increased 

Not tested 

Dresbach et al., 

2004 

Transfection NL1, 

NL1ΔC 

NL1 is targeted to dendritic spines 

via its C-terminal sequence; 

NL1ΔC mutant lacking C-tail is 

not localized in spines 

Not tested 

Graf et al., 2004 Transfection NL1, NL2, 

NL3, NL4 

NL1, NL3, NL4 clusters PSD-95, 

NL2 clusters gephyrin, PSD-95 

NL2 decreases frequency 

and amplitude of  

mEPSCs and mIPSCs 

Iida et al., 2004 Transfection NL1, 

NL1+S-SCAM, 

NL1+PSD-95, 

NL1-C, NL1-C-del 

Co-transfection with S-SCAM, 

but not with PSD-95 clusters NL1 

in spines; NL1 induces transient 

increase in density of 

synaptophysin puncta 

Not tested 

Prange et al., 2004 Transfection NL1, 

NL1+PSD-95;  

siRNA PSD-95 

NL1 increases VGLUT and 

VGAT clusters density; co-

transfection with PSD-95 restricts 

NL1 localization to excitatory 

synapses 

NL1 increases mEPSC and 

mIPSC frequency, and 

mEPSC amplitude; co-

transfection of PSD-95 

with NL1 abolishes 

mIPSC effect and 

enhances mEPSC effect 



 6 

Boucard et al., 

2005 

Transfection NL1, 

NL1ΔAB 

NL1 increases synapse density; 

NL1ΔAB less efficiently increases 

synapse density and increases 

synapse size 

Not tested 

Chih et al., 2005 Transfection NL1, NL2, 

NL3, NL1swap, NL1ΔC 

mutants; shRNA sh-NL1, 

NL2, NL3,  

sh-NL1+NL2+NL3  

NL1 increases density of PSD-95, 

Homer, NR1 and VGlut1 puncta; 

NL2, NL3 increase density of 

VGlut1 and VGAT puncta; 

NL1swap increases density of 

PSD-95, but not NR1 puncta, 

NL1ΔC increases density of NR1, 

but not PSD-95 puncta; sh-

NL1,2,3, sh-NL1+NL2+NL3 

decrease density of spines and 

VGlut1, GluR1 puncta 

sh-NL1+2+3 ‘knockdown’ 

of all three neuroligins 

decreases mIPSC 

frequency and amplitude, 

and slightly decreases the 

mEPSC amplitude 

Levinson et al., 

2005 

Transfection NL1, NL2, 

NL3, NL2+PSD-95, 

NL3+PSD-95 

NL1, NL2, NL3 increase VGLUT 

and VGAT clusters density; PSD-

95 shifts NL2 localization from 

inhibitory to excitatory synapses 

NL1 increases mEPSCs 

and mIPSCs frequency and 

amplitude; this effect is 

blocked by soluble Nrx-Fc 

Nam et al., 2005 Transfection NL1, 

NL1ΔC mutant 

NL1ΔC reduces clustering of 

PSD-95 and AMPA receptors; 

NL1 is not tested 

NL1ΔC decreases AMPA 

mEPSCs frequency and 

amplitude, and NMDA 

sEPSCs amplitude; NL1 is 

not tested 

Sara et al., 2005 Transfection NL1, 

SynCAM 

NL1 increases synapse density in 

immature neurons; SynCAM has 

no effect 

SynCAM increases 

mEPSCs frequency in 

immature neurons; NL1 

has no effect 
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Supplementary Table 2 
Statistical analysis of the relative effect of chronic AP5 treatment 

on synaptic responses and synapse numbers 
in control-transfected and NL1-transfected neurons 

 
Ratio AP5 Statistical Significance 

Figure Transfection Analysis  untreated/ 
treated +/-

SER* 

AP5 
treatment 

NL vs. 
Control 

Transfection 

NL1-EGFP 1.9+/-0.2 p<0.01 

EGFP 
AMPA EPSCs 

1.6+/-0.3 p<0.05 
p<0.01 

NL1-EGFP 2.9+/-0.4 p<0.01 

EGFP 
NMDA EPSCs 

1.7+/-0.4 p<0.05 
p<0.01 

NL1-EGFP 1.7+/-0.3 p<0.01 

EGFP 
N/A EPSCs 

1.1+/-0.2 ns 
p<0.01 

NL1-EGFP 1.9+/-0.3 p<0.01 

EGFP 
Spine Density 

1.5+/-0.3 ns 
p<0.01 

NL1-EGFP 2.2+/-0.5 p<0.01 

1 

EGFP 
Synapse Density 

1.6+/-0.4 p<0.05 
p<0.01 

NL2-Venus 1.1+/-0.2 ns 

EGFP 
AMPA EPSCs 

1.4+/-0.3 ns 
ns 

NL2-Venus 1.4+/-0.3 ns 

EGFP 
NMDA EPSCs 

1.5+/-0.3 p<0.05 
ns 

NL2-Venus 1.1+/-0.2 ns 

EGFP 
N/A EPSCs 

1.2+/-0.3 ns 
ns 

NL2-Venus 0.8+/-0.2 ns 

EGFP 
Spine Density 

1.15+/-0.14 ns 
p<0.05 

NL2-Venus 1.3+/-0.3 ns 

5 

EGFP 
Synapse Density 

1.1+/-0.3 ns 
ns 
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NL1 2.6+/-0.3 p<0.01 

SynCAM 
AMPA EPSCs 

1.2+-0.2 ns 
p<0.01 

NL1 3.2+/-0.5 p<0.01 

SynCAM 
NMDA EPSCs 

1.3+/-0.3 ns 
p<0.01 

NL1 1.4+/-0.3 ns 

SynCAM 
N/A EPSCs 

1.1+/-0.3 ns 
p<0.01 

NL1 1.9+/-0.3 p<0.01 

SynCAM 
Spine Density 

1.4+/-0.5 ns 
p<0.01 

NL1 1.8+/-0.3 p<0.01 

S1 

SynCAM 
Synapse Density 

1.6+/-0.5 p<0.05 
p<0.01 

NL1-EGFP 1.8+/-0.3 p<0.01 

EGFP-actin 
Spine Density 

0.88+/-0.12 ns 
p<0.01 

NL1-EGFP 1.6+/-0.2 p<0.01 

EGFP-actin 
Synapse Density 

1.1+/-0.2 ns 
p<0.01 

NL1-EGFP 1.0+/-0.3 ns 

S2 

EGFP-actin 

Inhibitory Synapse 
Density 

0.8+/-0.2 ns 

ns 

*SER (σR)– statistical error of ratios is defined by a formula: 
22
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R=f/g, f is untreated condition, g is treated condition. The ratios represent untreated/treated conditions 
for different constructs in corresponding figures 1,5,S1,S2. Standard error of the ratio untreated/treated was 
calculated using the formula: 
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SEMuntreated and SEMtreated represent corresponding SEMs for untreated and treated condition. This standard 
formula recalculates the SEM of a ratio based on known means and SEMs of the components of this ratio.  
Thus, for example the first value in the Ratio AP5 column represents the ratio of the mean AMPA EPSC of 
the NL1-EGFP-transfected neurons not treated with AP5 divided by the mean AMPA EPSC of the NL1-
EGFP-transfected neurons treated with AP5. This ratio is 1.9. In order to calculate this ratio, we took the 
mean values for AMPA EPSCs for NL1-EGFP and NL1-EGFP+AP5 determined before. They were 
determined as the average values of the 3 mean AMPA EPSCs of 3 different experiments. The SEMs of 
these values were determined as a square root of the sum of the squares of the SEMs of the individual 
experiments. The SEM of the ratio, which is called SER here, is calculated by the formula above and equals 
0.2 (the rounding of the SEMs is performed to the first meaningful digit if it is ≥ 15 (if it is <15, we leave 2 
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digits). The rounding of the SEMs determines the rounding of the ratio, so we have the ratio equals 1.9 and 
the error 0.2. So, we represent it as 1.9+/- 0.2. The p-value for the AP5 treatment represents the p-value for 
the student t-test for comparison of statistical difference between AMPA EPSCs of NL1-EGFP-transfected 
neurons and AMPA EPSCs of NL1-EGFP-transfected neurons and treated with AP5. The next p-value of 
transfection represents the p-value for the student t-test for comparison of statistical difference between 
AMPA EPSCs of NL1-EGFP-transfected neurons and AMPA EPSCs of EGFP-transfected neurons.  
And the next row is the same procedure for AMPA EPSCs of EGFP-transfected neurons, and so on. 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1 

 Differential effect of chronic AP5 treatment on synapse numbers and synaptic transmission in 

neurons expressing NL1 or SynCAM. (A) Images of neurons co-transfected with EGFP-β-actin and NL1 

or SynCAM, with or without chronic AP5 treatment. Every condition is represented by two images: the left 

image displays the EGFP fluorescence used to visualize dendritic spines and filopodia (green), and the right 

image the merged pictures of the EGFP fluorescence (green) and of immunocytochemistry for MAP2 (blue) 

and synapsin (red). (B) and (C) Summary graphs of the effects of chronic blockade of NMDA receptors with 

AP5 on synapse numbers (B) and size (C). (D) Representative traces of evoked NMDA and AMPA receptor-

dependent EPSCs in neurons co-transfected with EGFP and NL1 or SynCAM, with or without AP5 

treatment. (E) Mean amplitudes of NMDA and AMPA receptor-dependent EPSCs and mean NMDA/AMPA 

ratios of neurons expressing NL1 or SynCAM without or with chronic AP5 treatment. Data shown in panels 

(B), (C), and (E) are means ± SEMs (3 experiments, n=18 cells for each sample); statistical significance of 

the effect of AP5 treatment was evaluated with the Student's t-test; asterisks represent statistical significance 

of difference between SynCAM and SynCAM+AP5, SynCAM and NL1, NL1 and NL1+AP5 (* = p<0.05; 

** = p<0.01; ns = not significantly different). 

 

Supplementary Figure 2 

Effect of NL1 and of chronic blockade of NMDA receptors on inhibitory synapse numbers. (A) 

Representative images of hippocampal neurons transfected with EGFP-actin or NL1-EGFP cultured in the 

presence or absence of 50 µM AP5 for four days. Neurons were visualized by EGFP fluorescence (green), 

and immunolabeling with antibodies to the vesicular GABA transporter (VGAT) (blue) and to the 

presynaptic marker synapsin (red). For each sample, the red synapsin and the blue VGAT channels, as well 

as the merged image of all three channels are shown. (B) and (C) Summary graphs of the quantitative 

analysis of synapse numbers (B) and size (C) in neurons expressing EGFP-actin, or EGFP-tagged NL1, and 

treated with either control medium or AP5 (n=3 independent experiments with 8 neurons/experiment and 

condition); asterisks represent statistical significance of difference between EGFP and EGFP+AP5, NL1-

EGFP and NL1-EGFP+AP5 (Student's t-test; * = p<0.05; ** = p<0.01). 

 

Supplementary Figure 3 

 NL2 expression in hippocampal neurons. Representative images of neurons expressing EGFP or 

NL2-Venus. Image acquisition was done using GFP filter in both cases of EGFP and NL2-Venus. Every 

condition is represented by two images: the left image displays the EGFP fluorescence (green), and the right 

image the merged pictures of the EGFP fluorescence (green) and of immunocytochemistry for MAP2 (blue) 

and synapsin (red). Calibration bar in left panels applies to all panels. 
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Supplementary Figure 4 

 EPSC input/output curves in cortical slices from NL1 and NL2 KO mice. Evoked EPSCs were 

measured in Layer 2/3 of the somatosensory (barrel) cortex in response to extracellular stimulation in Layer 

2/3, with 1-2 cells/slice analyzed in order to minimize epileptiform activity. (A) and (B) Representative 

traces and summary graph for evoked EPSCs for NL1 KO mice and wild type littermate pairs (n=2). (C) and 

(D) Representative traces and summary graph for evoked EPSCs for NL2 KO mice and wild type littermate 

pairs (n=3). Note that network activity predominated at low stimulus strengths, and that to exclude its effect, 

the initial peak in the trace was taken as the evoked response (indicated by arrow). Data shown in (B), and 

(D) are means ± SEMs; asterisks indicate statistically significant differences (** = p<0.01; *** = p<0.001). 

 

Supplementary Figure 5 

Effect of NL1 mutations on neuronal synapse density. (A) Diagram of constructs used for 

transfections. (B) Morphological analysis of transfected neurons. Representative examples of merged EGFP-, 

MAP2- and synapsin-localizations (green, blue and red correspondingly) in neurons transfected with EGFP 

alone, with the EGFP-tagged NL1 (NL1-EGFP), with the acetylcholinesterase/NL1 fusion protein (AchE-

NL1-EGFP) or with the R473C-mutant NL1 (NL1R473C-EGFP). Calibration bar in the left panel applies to all 

panels. (C) and (D) Summary graphs of the effect of expressing the various NL1 proteins on synapse number 

(B) and size (C). Density and size of spines and presynaptic terminals on a dendrite, determined from the 

EGFP-fluorescence or synapsin-localization data. Data shown are means ± SEMs (n=3 independent 

experiments with 6-10 neurons/experiment and condition); asterisks indicate that a sample is significantly 

different from the EGFP-only transfected control (Student's t-test; * = p<0.05; ** = p<0.01). 

 

Supplementary Figure 6 

 Morphological analysis of the effect of the overexpression of NL/SynCAM chimeras on 

synapses. Comparative analysis of the effects of NL1, SynCAM, and NL1/SynCAM chimeras on synapse 

numbers in hippocampal neurons. Neurons were co-transfected with the indicated constructs (A) and EGFP-

β-actin and analyzed for spine and synapse density and size. (B) Representative images of hippocampal 

neurons co-transfected with neuroligin 1 and EGFP-β-actin, and visualized by virtue of the EGFP-actin 

fluorescence and synapsin immunocytochemistry (red). Image on right shows the merged view of both 

fluorescence pictures. (C) Merged images of neurons co-transfected with SynCAM, NL1-SynCAM, or 

SynCAM-NL1 and EGFP-actin. (D) and (E) Summary graphs of the density (C) and sizes (D) of 

postsynaptic spines and presynaptic terminals. Data shown are means ± SEMs (n=20 cells in 3 experiments 

for each sample); significance was evaluated by the Student's t-test ; asterisks represent statistical 

significance of difference between SynCAM and NL1, NL1-SynCAM and SynCAM-NL1 (* = p<0.05; ** = 

p<0.01; ns = not significantly different; all relative to the SynCAM-transfected sample). 
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Supplementary Figure 7 

 Electrophysiological analysis of the effect of the overexpression of NL/SynCAM chimeras on 

synapses. (A) Representative traces of NMDA- (top) and AMPA-receptor (bottom) dependent EPSCs. (B) 

Amplitudes of NMDA- and AMPA-receptor dependent EPSCs and NMDA/AMPA ratios of neurons co-

transfected with NL1, SynCAM, NL1-SynCAM, or SynCAM-NL1 and EGFP-β-actin. Data shown are 

means ± SEMs (n=18); asterisks indicate whether a result is significantly different between the samples in 

the pairs of NL1 and SynCAM, NL1-SynCAM and SynCAM-NL1, NL1 and NL1-SynCAM, SynCAM and 

SynCAM-NL1 (Student's t-test; * = p<0.05; ** = p<0.01; ns = not significantly different). 

 

Supplementary Figure 8 

 Effect of chronic picrotoxin (PTX) and AP5 treatments on AMPA- and NMDA-receptor 

mediated EPSC amplitudes in cultured neurons from wild-type and NL1-KO mice. (A) and (B), and 

(C) and (D). Sample traces (A and C) and summary graphs (B and D) of AMPA-EPSCs (A and B) and 

NMDA-EPSCs (C and D). Cultured neurons were prepared from newborn NL1-KO or littermates control 

mice, and incubated in 50 μM AP5 ± 10 μM CNQX and 50 μM PTX at DIV-10 to block all activity; 

recordings were performed at 14-15 DIV. EPSCs were measured in 50 μM PTX at a -70 mV (A and B) or 

+40 mV holding potential (C and D). AP5 or AP5 + PTX treatment significantly reduced AMPA-EPSC size 

in wildtype neurons but not in NL1-KO neurons. [For B: Wild type: Mock treated = 1608.86 ± 116.78 pA, n 

= 22; PTX treated = 1504.5 ± 116.96 pA, n = 21; AP5 = 1266.17 ± 89.76 pA, (p = 0.032) n = 20; AP5 + PTX 

treated = 1252.64 ± 121 pA, (p = 0.043) n = 20; NL1 knock-out: Mock treated = 1546.38 ± 145.45 pA, n = 

18; PTX treated = 1541.25 ± 113.7 pA, n = 16; AP5 = 1405. 7 ± 91.9 pA, n = 14; AP5 + PTX treated = 

1350.33 ± 133.76 pA, n = 16. For D: Wild type: Mock treated = 721.13 ± 63.9 pA, n = 22; PTX treated = 

797.5 ± 62.8 pA, n = 21; AP5 = 500.88 ± 39.7 pA, (p = 0.009) n = 20; AP5 + PTX treated = 492.64 ± 42,3 

pA, (p = 0.0082) n = 20; NL1 knock-out: Mock treated = 642.5 ± 64.48 pA, n = 18; PTX treated = 676.25 ± 

69.09 pA, n = 16; AP5 = 554.64 ± 46.9 pA, n = 14; AP5 + PTX treated = 615.66 ± 73.8 pA, n = 16]  
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