Programmed fluctuations in sense/antisense transcript ratios drive sexual differentiation in *S. pombe*

Danny A. Bitton, Agnes Grallert, Paul J. Scutt, Tim Yates, Yaoyong Li, James R. Bradford, Yvonne Hey, Stuart D. Pepper, Iain M. Hagan, Crispin J. Miller

Supplementary Figures S1-13 and supplementary Tables S1, S3, S8 and S11

Supplementary Figure S1. Live cell imaging of strains IH10191, IH10192 and IH10110 stained with $10 \mu g/\mu I$ Hoescht 33342.

Cells were grown in EMM2 at 25°C and shifted to 32°C one hour before imaging to induce meiosis. Note the prominent extension and bending of the "horsetail" nuclei in the panels of wild type (12 to 60 minutes), $dis1.kan^Rs$ (6 – 96) while the nucleus in $dis1.kan^RAS$ resembled that of the wild type mitotic samples over the equivalent period; the nucleus did not adopt the "horsetail" configuration.

Classification	Range of TBlocks (bp)	No. of TBlocks 76,315	Number of extended GeneDB accessions	
Exonic	50-2.041	27.387	N/A	
Extending Exons	50-3,958	9,805	(7,619/10,677) = 71.4%	
Intronic	50-276	601	NA	
Intergenic	50-919	38,522	NA	
Within genes	50-2,041	30,633	NA	
Extending genes	50-3,958	7,160	(4,736/5,857) = 80.9%	
Distribution of TBlocks when UTR boundaries were used in both orientations				
Genes	50-2795	37,005	NA	
Extending Genes	105-1,337	35	NA	
Intergenic	50-884	19,931	NA	
Antisense	50-1,521	17,898	NA	
Extending Antisense	50-3,958	1,446		
Number of TBlocks after splitting extensions in both orientations				
Genes	1-2,795	37,040	NA	
Intergenic	1-884	21,199	NA	
Antisense	1-1,521	19,344	NA	

Supplementary Table S1. Distribution of TBlocks when positioned against standard and augmented *S. pombe* annotation

Classification	Number of regions	Regions with sequence reads in at least one sample
Annotated genes	5,857	5,459
Antisense loci	5,857	4,384
Introns	4,825	2,322
Intergenic	21,199	20,726
Total	37,738	32,891

Supplementary Table S3. The number and type of genomic regions interrogated

log₁₀ (maximum number of reads across 5 samples)

Supplementary Figure S2. *S. pombe* regions with altered transcript levels (FDR < 0.05) as determined by a G-test applied to RNA sequencing count data.

Sequence reads were obtained for five samples as follows: asynchronous haploid wild type (972 h⁻), *pat1.114/ pat1.114* diploid in mid log phase vegetative growth (0 hours) and at three timepoints during a temperature induced meiosis (3, 5 and 10 hours). In total, 32,891 genomic regions were interrogated (black), while 6,599 where found to be changing in at least one sample (red).

Supplementary Figure S3. Transcript abundance of $atf21^+$, $atf31^+$ and $thi3^+/nmt1^+$ loci in $atf21.\Delta$, $atf31.\Delta$ and vegetative pat1.114/ pat1.114 wild type diploid and synchronised meiotic datasets.

Selected parts of the S. pombe genome. Genome annotation is indicated in the bottom of each panel, with top and bottom strand indicated by the grey arrows in the background. Exons are shown by black rectangles, with direction of transcription indicated by (+) or (-). Normalised, strand-specific, RNA sequencing data on a log₂ scale are presented in the tracks above, with forward-strand transcription shown above the centre-line of each track, reverse-strand transcription, below. All strains are diploids that are homozygous for both pat1.114 and the atf allele. Each track represents a different sample, as indicated. (A) $atf21^+$ expression profiles in $atf31.\Delta$ and $atf21.\Delta$ datasets. Fold changes for $atf21^+$ were significant at vegetative state (log₂ fold change: 24.3; FDR $< 3.19 \times 10^{-12}$), and at timepoint 3 hrs (Fold change: 4.1; FDR < 1.15×10^{-7}) in the absence of $atf31^+$ ($atf31.\Delta$) compared to the equivalent samples in the wild type control dataset. (B) $atf31^+$ expression profiles in atf21. Δ and atf31. Δ datasets. log₂ fold changes for atf31⁺ were significant at timepoint 5 hrs (log₂ fold change: 0.46; FDR $< 1.12 \times 10^{-5}$), and at timepoint 10 hrs (log₂ fold-change: 3.7; FDR ~0) in the absence of $atf21^+$ ($atf21.\Delta$) compared to the equivalent sample in *pat1.114/pat1.114* atf21⁺/atf21⁺ dataset. (C) $nmt1^+$ (thi3⁺) expression profile in *pat1.114/pat1.114 atf21⁺/atf21* dataset.

Run	Sample	Unique reads (3mm)	Unique junction reads (3mm)	Non- unique reads (0mm)	Unique reads (0mm)	Unique junction reads (0mm)
1 st	Haploid Veg (972 h ⁻) pat1.114_Veg (diploid ,time 0) pat1.114_3_hr pat1.114_5_hr pat1.114_10_hr	2,454,972 6,596,564 2,627,403 2,970,532 3,631,419	37,894 66,048 28,454 35,457 28,224	3,458,848 10,760,215 3,925,107 3,886,259 4,661,029	679,672 1,861,613 727,910 775,966 924,748	10,502 19,173 8,231 10,003 8,390
2 nd	diploid Veg Haploid Veg (972 h^{-}) pat1.114_Veg (diploid ,time 0) pat1.114_3_hr pat1.114_5_hr pat1.114_10_hr atf21. Δ _pat1.114_Veg (diploid ,time 0) atf21. Δ _pat1.114_3_hr atf21. Δ _pat1.114_10_hr atf31. Δ _pat1.114_Veg (diploid ,time 0) atf31. Δ _pat1.114_5_hr atf31. Δ _pat1.114_5_hr atf31. Δ _pat1.114_5_hr atf31. Δ _pat1.114_5_hr atf31. Δ _pat1.114_10_hr	5,248,386 5,326,784 6,784,746 2,198,240 4,083,167 2,493,572 7,004,364 4,818,515 3,319,073 1,320,520 3,642,404 3,488,205 6,139,379 3,438,982	71,752 64,851 93,167 28,604 47,553 21,311 95,520 64,421 40,039 11,438 52,269 48,800 78,085 26,006	10,463,396 14,512,104 9,502,115 6,250,166 6,708,683 9,523,194 10,065,794 6,822,336 5,161,295 7,171,624 8,693,897 7,199,376 8,895,405 9,551,539	1,538,496 1,607,067 1,979,004 614,608 1,128,778 684,390 2,080,901 1,404,529 969,010 373,242 1,084,952 1,046,936 1,787,263 949,806	20,213 19,486 26,241 8,061 14,009 6,300 27,056 19,272 12,532 3,468 15,361 15,031 24,514 8,156

Supplementary Table S8. The number of sequence reads obtained for each sample. mm: mismatches; Veg: Vegetative growth.

Supplementary Figure S4. Expression profiles of 1,714 regions with significant changes in transcript level between $atf21.\Delta$ or $atf31.\Delta$ mutant and the wild type control strains.

Heatmap showing the expression patterns of statistically significant regions that were found to be changing in at least one sample. Differential expression was determined using count data and a Fisher exact test as described in (Bloom et al, 2009). In brief, a series of pair-wise comparisons were conducted in order to compare the read counts of each gene at a given sample between wild type (*pat1.114*) cells and each of the mutant strains (*pat1.114 atf21.* Δ or *pat1.114 atf31.* Δ). All strains are diploids that are homozygous for both *pat1.114* and the *atf* allele. P-values were adjusted to account for multiple testing and a FDR computed. A threshold of < 0.0125 was applied. Transcript levels were normalized both by the total number of reads within a sample and by the length of each defined region. Data presented are log₂. Expression data were grouped according to the sample in which a given locus displayed the highest expression level. The 1,714 regions were allocated to the following groups, protein-coding genes (1,332), intronic regions (8), pseudogenes (4), annotated ncRNAs (88), TBlocks (197) and antisense loci (85). Expression values (log₂) colour key (top left).

Supplementary Figure S5. Reproducibility of RNA-sequencing data generated in two independent experiments.

Only loci with at least 1 read in any of the 19 samples were interrogated (35049 loci). Sample specific transcript levels for each locus were calculated using RNA sequencing count data generated from two biological replicates, as follows: 972 h^{-} vegetative haploid (**A**), *pat1.114/pat1.114* diploids in vegetative growth (**B**; 0 hrs) and a *pat1.114/pat1.114* diploid 3 (**C**), 5 (**D**) and 10 hours (**E**) following the temperature shift (first sequencing run: x-axis; second sequencing run; y-axis). Expression values (log₂) were normalized both by the total number of reads within a given sample and by the length of each defined region. Outliers are shown in black; Antisense Regulatory Transcripts (ARTs) in red. Pearson's correlation coefficient ('r') of the main cloud (only those loci with at least 1 read in both the first and second machine runs) are indicated in each panel.

Supplementary Figure S6. Meiotic progression of wild-type, RNAi deleted background and *spk1*^{4S} expressing strains alongside relative qPCR expression levels of *spk1* sense and antisense transcripts.

A, C) Cells of the indicated strains were grown in supplemented EMM2 (which contains 5 gl⁻¹ NH₄Cl) for 18 hours to mid log phase before filtration and re-suspension in MSL lacking any nitrogen source at time 0. Samples were taken for DAPI staining to reveal the chromatin configuration and so score meiotic progression (upper panels) and to extract RNA for the strand specific qPCR (lower panels) every two hours as indicated. For panels B, D-J in which antisense transcript expression at the heterologous *leu1* locus was induced by removal of thiamine, cells were grown to mid-log phase in supplemented EMM2 containing 2 μ M thiamine before isolation via centrifugation followed by three washes in supplemented EMM2 lacking this vitamin. After a 15 minute incubation in thiamine free medium cells were subject to a final wash and re-suspension in fresh thiamine free medium. Over the next 72 hours the culture density was maintained in low to mid-log phase by dilution before following the nitrogen starvation procedure with a mid – log phase culture as described for panels A and C.

Supplementary Figure S7. Meiotic progression of wild-type, RNAi deleted background and $spo6^{AS}$ expressing strains alongside relative qPCR expression levels of *spo6* sense and antisense transcripts.

For the h⁹⁰ strains in panels A-C and F-I growth and induction conditions were as described in the legend to Supplementary Figure S6. For panels D and J cells were grown at 25°C in supplemented EMM2 to mid-log phase before the temperature was shifted to 32°C at time 0 to induce meiotic commitment. Samples were taken for DAPI staining to reveal the chromatin configuration and so score meiotic progression (D, E) and to extract RNA for the strand specific qPCR (J, K) at the indicated intervals. For panels E and K in which antisense transcript expression at the heterologous *leul* locus was induced by removal of thiamine, cells were grown to mid-log phase at 25°C in EMM2 containing 75 mg ml⁻¹ leucine and 2 μ M thiamine before isolation via centrifugation followed by three washes in EMM2 + leucine (EMM2L). After a 15 minute incubation in thiamine free EMM2L medium cells were subject to a final wash and re-suspension in fresh thiamine free EMM2L medium. Over the next 72 hours the culture density was maintained in low to mid-log phase by dilution before the temperature was shifted from 25°C to 32°C to induce meiotic commitment. The strains in panels A-C and F-I are all haploid, while those in D, E, J and K are diploid strains that are homozygous for the indicated mutant alleles.

Supplementary Figure S8. Meiotic progression of wild-type, RNAi deleted background and *spo4^{4S}* expressing strains alongside relative qPCR expression levels of *spo4* sense and antisense transcripts.

Growth and induction conditions were as described in the legend to Supplementary Figure S6. All strains characterized in this figure are haploid.

Supplementary Figure S9. Expression of antisense *dis1*⁺ transcripts impacts upon protein levels.

(A, B) 972 h⁻ (IH5974) wild type or $ago1::kan^{R}$ (IH9677) strains bearing the pRep1N plasmids in which cells have been maintained in log phase for the duration of the study and the $nmt1^{+}$ promoter has been de-repressed for the times indicated in the legend below the immunoblots to detect the indicated proteins. (B) A repeat of the approach in A using an $ago1::kan^{R}$ background instead. (C) The indicated strains (mating type h⁹⁰) were grown to mid-log phase in medium containing thiamine, before being washed three times in medium lacking thiamine to induce transcription from the $nmt1^{+}$ promoter on the pREPH vectors. 48 hours later cells were subjected to nitrogen starvation and the frequency of horsetail movement assessed by anti-tubulin immunofluorescence and DAPI staining.

Supplementary Figure S10. Meiotic progression of wild-type, RNAi deleted background and *dis1^{AS}* expressing in *pat1.114* diploid strains.

A) Diploid cells homozygous for *pat1.114* mutation were grown at 25°C in supplemented EMM2 to mid-log phase before the temperature was shifted to 32°C at time 0 to induce meiotic commitment. Samples were taken for DAPI staining to reveal the chromatin configuration and so score meiotic progression and to prepare protein extracts every two hours after the shift. Western blots of the SDS PAGE gels of the extracts were cut into two and probed with antibodies to either Dis1 (upper) or α -tubulin (TAT1 – lower). B) *leu1::nmt*.dis1^{AS} pat1.114* cells were grown to mid-log phase at 25°C in EMM2 containing 75 mg ml⁻¹ leucine and 2 μ M thiamine before isolation via centrifugation followed by three washes in EMM2 + leucine (EMM2L). After a 15 minute incubation in thiamine free EMM2L medium. Over the next 48 hours the culture density was maintained in low to mid-log phase by dilution before the temperature was shifted from 25°C to 32°C to induce meiotic commitment.

Supplementary Figure S11. Antisense RNA production perturbs Spk1 and Spo4/Spo6 function in Dcr1 and Rdp1 dependent manner.

The indicated strains processed as described for Figure 6 A-J.

Supplementary Figure S12. Meiotic progression of wild-type, RNAi deleted background and dis1^{AS} expressing h^{90} strains.

Growth and induction conditions were as described in the legend to Supplementary Figure S6. All strains characterized in this figure are haploid. For panels A-D protein extracts were prepared every two hours subject to SDS PAGE followed by Western blotting. The blots were cut into two and probed with antibodies to either Dis1 (upper) or α -tubulin (TAT1 – lower).

Supplementary Figure S13. Transcript profiles of $meu1^+$, $bqt1^+$ and $crs1^+$ loci in haploid at vegetative growth and pat1.114 at vegetative growth (0) and at 3, 5 and 10 hours following temperature shift

Selected parts of the *S. pombe* genome. Genome annotation is indicated in the bottom of each panel, with top and bottom strand indicated by the grey arrows in the background. Exons are shown by black rectangles, with direction of transcription indicated by (+) or (-). Normalised, strand-specific, RNA sequencing data on a log_2 scale are presented in the tracks above, with forward-strand transcription shown above the centre-line of each track, reverse-strand transcription, below. Each track represents a different sample, as indicated. (A) $meu1^+$ (B) $bqt1^+$ and (C) $crs1^+$ expression profiles in both orientations in pat1.114/pat1.114 diploid dataset. Colours represent expression data originating from different samples as indicated in the legend (left).

Strain	Genotype	Source
Number		
IH180	h ⁻ pat1.114	Lab Stock
IH347	h ⁹⁰	Lab Stock
IH2912	h^{-}/h^{+} pat1.114/pat1.114 ade6.M210/ade6.M216	Lab Stock
IH3365	h^{-}/h^{+} ade6.M210/ade6.M216	Lab Stock
IH5974	h ⁻ 972	Lab Stock
IH8794	h ⁺ rpl42::cyhR.SP56Q leu1.32 ura4.d18	Roguev <i>et al.</i> (2007)
		Nat Methods 4: 861-866
IH8814	h ⁻ /h ⁺ pat1.114/pat1.114 ade6.M210/ade6.M216	This study
1110022	$atf31::kan^{\kappa}MX6/atf31::kan^{\kappa}MX6$	
IH8832	h ⁷ /h ⁷ pat1.114/pat1.114 ade6.M210/ade6.M216	This study
1118833	aij21::naiMA0/aij21::naiMA0	This study
1110055	spo6 ^{··} kan ^R MX6/spo6 ^{··} kan ^R MX6	This study
IH9675	h^{-}/h^{+} pat1.114/pat1.114 ade6.M210/ade6.M216	This study
	dis1.kan ^R AS/dis1.kan ^R AS	
IH9677	h^{90} ago 1::kan ^R	Volpe <i>et al.</i> (2002)
	00 0	<i>Science</i> 297 : 1833-1837
IH9748	h^{90} spo6::kan ^k MX6	This study
IH9758	h^{-}/h^{+} pat1.114/pat1.114 ade6.M210/ade6.M216 dis1.kan ^R s/dis1.kan ^R s	This study
IH9985	h ⁹⁰ clr4::natMX6 ura4.d18 leu1.32	Bayne <i>et al.</i> (2010)
		<i>Cell</i> 1 40 : 666-677
IH9987	h ⁹⁰ dcr1::natMX6 ura4.d18 leu1.32 his3.d1	Provost <i>et al.</i> (2002)
		<i>PNAS</i> 99: 16648-16653
IH9989	h ^{°°} rdp1::natMX6 ura4.d18 leu1.32	Volpe .et al (2003)
1110001	h^{-} dislowing A^{+} up a A d 18 low 1.32	Chromosome Res. 11:13/-146
1117771	n als1uru4 uru4.u10 leu1.52	Genes Dev 9 :1572-1585
IH9999	h^{-} leu1::nmt*dis1.AS:ura4 ⁺ ura4.d18	This study
IH10000	h^{90} leu1::nmt*spo4.AS:ura4 ⁺ ura4.d18	This study
IH10005	h^{90} leu1::nmt*spo6.AS:ura4 ⁺ ura4.d18	This study
IH10006	h^{90} leu1::nmt*ups1:ura4 ⁺ ura4.d18	This study
IH10043	$h^{-}ago1::kan^{R} leu1::nmt^{*}dis1.AS:ura4^{+}ura4.d18$	This study
IH10044	h^{90} ago1::kan ^R leu1::nmt*dis1.AS:ura4 ⁺ ura4.d18	This study
IH10045	$h^{-} dcr1::natMX6 leu1::nmt^{+} dis1.AS:ura4^{+} ura4.d18$	This study
IH10046	h^{90} dcr1::natMX6 leu1::nmt*dis1.AS:ura4 ⁺ ura4.d18	This study
IH10047	$h^{-}rdn1::natMX6$ leu1::nmt*dis1.AS:ura4 ⁺ ura4.d18	This study
IH10048	h^{90} rdp1::natMX6 leu1::nmt*dis1.AS:ura4 ⁺ ura4.d18	This study
IH10051	h^{90} ago1::kan ^R leu1::nmt*spo4.AS:ura4 ⁺ ura4.d18	This study
IH10054	h^{90} rdp1::natMX6 leu1::nmt*spo4.AS:ura4 ⁺ ura4.d18	This study
IH10056	h^{90} ago1::kan ^R leu1::nmt*spo6.AS:ura4 ⁺ ura4.d18	This study
IH10058	h^{90} dcr1::natMX6 leu1::nmt*spo6.AS:ura4 ⁺ ura4.d18	This study

Supplementary Table S11. S. pombe strains used in this study

IH10060	h ⁹⁰ rdp1::natMX6 leu1::nmt*spo6.AS:ura4 ⁺ ura4.d18	This study
IH10061	h ⁹⁰ leu1::nmt*spk1.AS:ura4 ⁺ ura4.d18	This study
IH10063	h^{90} ago1::kan ^R leu1::nmt*spk1.AS:ura4 ⁺ ura4.d18	This study
IH10067	h ⁹⁰ dcr1::natMX6 leu1::nmt*spk1.AS:ura4 ⁺ ura4.d18	This study
IH10070	h^{90} ago1::kan ^R leu1::nmt*ups1:ura4 ⁺ ura4.d18	This study
IH10072	h ⁹⁰ dcr1::natMX6 leu1::nmt*ups1:ura4 ⁺ ura4.d18	This study
IH10101	h ⁹⁰ dcr1::natMX6 leu1::nmt*spo4.AS:ura4 ⁺ ura4.d18	This study
IH10102	h ⁻ clr4::natMX6 leu1::nmt*dis1.AS:ura4 ⁺ ura4.d18	This study
IH10103	h ⁹⁰ clr4::natMX6 leu1::nmt*dis1.AS:ura4 ⁺ ura4.d18	This study
IH10105	h ⁹⁰ rdp1::natMX6 leu1::nmt*spk1.AS:ura4 ⁺ ura4.d18	This study
IH10107	h^{90} atf21::natMX6	This study
IH10108	h^{90} atf31::kan ^R MX6	This study
IH10110	h ⁻ /h ⁺ pat1.114/pat1.114 ade6.M210/ade6.M216	This study
	leu1::nmt*dis1.AS:ura4 ⁺ /leu1::nmt*dis1.AS:ura4 ⁺	
	ura4.d18/ ura4.d18	
IH10144	h^{-}/h^{+} dis1::ura4 ⁺ /dis1::ura4 ⁺ pat1.114/pat1.114	This study
	ade6.M210/ade6.M216 ura4.d18/ ura4.d18	
IH10145	h/h ⁺ pat1.114/pat1.114 ade6.M210/ade6.M216	This study
	dis1.kan ^k AS/dis1.kan ^k AS leu1::atb2GFP:ura4 ⁺ /	
	leu1::atb2GFP:ura4 ura4.d18/ura4.d18	
IH10173	h ³⁰ rdp1::natMX6 leu1::nmt*ups1:ura4' ura4.d18	This study
IH10191	h/h ⁺ pat1.114/pat1.114 ade6.M210/ade6.M216	This study
	leu1::atb2GFP:ura4 ⁺ /leu1::atb2GFP:ura4 ⁺ ura4.d18/	
	ura4.d18	
IH10192	h/h^+ pat1.114/pat1.114 ade6.M210/ade6.M216	This study
	$dis1.kan^{\kappa}s/dis1.kan^{\kappa}s$ $leu1::atb2GFP:ura4^{+}/$	
	leu1::atb2GFP:ura4 ⁺ ura4.d18/ ura4.d18	
IH9778	spo6::kanMX6/spo6::kanMX6 pat1.114/pat1.114	This study
	ade6.M210/ade6.M216 h ⁻ /h ⁺	
IH10444	pat1.114/pat1.114 ade6.M210/ade6.M216	This study
	leu1::nmt*spo6 ^{AS} :ura4 ⁺ /leu1::nmt*spo6 ^{AS} :ura4 ⁺	
	ura4.d18/ura4.d18 h ⁻ /h ⁺	