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1 Excitation Transfer Mediated by Optical Near-field In-
teractions

The interaction Hamiltonian between an electron and an electric field is given by

Ĥint = −
∫

ψ̂†(~r) ~µ ψ̂(~r) · ~̂D(~r) d~r, (1)

where ~µ is the dipole moment, ψ̂†(~r) and ψ̂(~r) are respectively the creation and
annihilation operators of an electron at ~r, and ~̂D(~r) is the operator of electric flux
density. In usual light-matter interactions, the operator ~̂D(~r) is a constant because
the electric field of propagating light is considered to be constant on the nanometer
scale. Therefore, one can derive optical selection rules by calculating the trans-
fer matrix of an electric dipole. Consequently, in the case of cubic quantum dots,
transitions to states described by quantum numbers containing an even number are
prohibited. On the other hand, in the case of optical near-field interactions, there
is a steep electric gradient of optical near-fields in the vicinity of nanometer-scale
matter, and this facilitates optical transitions that violate conventional optical se-
lection rules. Such an energy transfer to a conventionally dipole-forbidden energy
level cannot be explained by carrier tunnelling [1, 2, 3] or dipole interactions [4, 5].

Optical excitations in nanostructures, such as quantum dots, can be transferred
to neighbouring structures via optical near-field interactions [6]. Assume that two
cubic quantum dots QDS and QDM , whose side lengths are a and

√
2a, respec-

tively, are located close to each other [Fig. 1(a)]. Suppose that the energy eigenval-
ues for the quantised exciton energy level specified by quantum numbers (nx, ny, nz)
in the QD with side length a (QDS ) are given by

E(nx,ny,nz) = EB +
~2π2

2Ma2 (n2
x + n2

y + n2
z ), (2)

where EB is the energy of the bulk exciton and M is the effective mass of the ex-
citon. According to eq. (2), there exists a resonance between the level of quantum
number (1, 1, 1) for QDS [denoted as S 1 in Fig. 1(a)] and (2, 1, 1) for QDM (M2).
An optical near-field interaction, denoted as US 1 M2 , results from the steep gradient
of the electric field in the vicinity of QDS . It is known that the inter-dot optical
near-field interaction is given by a Yukawa-type potential denoted by

U(r) = Aexp(−r/a)/r, (3)

where r is the inter-dot distance, and A and a are constants [6]. Therefore, excitons
in QDS can move to the (2, 1, 1)-level in QDM. Note that an optical excitation of
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the (2, 1, 1)-level in QDM corresponds to an electric dipole-forbidden transition.
However, the optical near-field allows this level to be populated because of the
steep electric field in the vicinity of the QDS . In QDM , the exciton sees a sublevel
energy relaxation, denoted by Γ, which is faster than the near-field interaction, and
so the exciton goes to the (1, 1, 1)-level of QDM (M1).

In the optical excitation transfer discussed above, the energy dissipation oc-
curring in the destination quantum dot, QDM , determines the uni-directionality
of signal transfer [7]. Therefore, when the lower energy level of the destination
quantum dot is filled with another excitation (called “state-filling”), the optical ex-
citation occurring in a smaller QD cannot move to a larger one. As a result, the
optical excitation will go back and forth between these dots (optical nutation).

This suggests that the flow of optical excitation can be controlled differently
in systems composed of multiple quantum dots by inducing state-filling therein.
For example, Fig. 1(b) schematically represents a system consisting of five QDs
denoted as QDLL, QDML, QDS , QDMR and QDLR. The sizes of QDS , QDMi

(i = L,R) and QDLi (i = L,R) are respectively given by a,
√

2a and 2a. The energy
levels in the system are summarised as follows.

Energy Level QD Designation
(1,1,1) QDML ML1

QDMR MR1

QDLL LL1

QDLR LR1

(2,1,1) QDML ML2

QDMR MR2

QDLL LL2

QDLR LR2

(2,2,2) QDLL LL3

QDLR LR3

In such a system, the optical near-field interactions, shown schematically in
Fig. 1(b), are as follows (i = L,R) .

US 1 Mi2 Between (1, 1, 1)-level of QDS (S 1) and (2, 1, 1)-level of QDMi (Mi2)
US 1Li3 Between (1, 1, 1)-level of QDS (S 1) and (2, 2, 2)-level of QDLi (Li3)
UMi1Li2 Between (1, 1, 1)-level of QDMi (Mi1) and (2, 1, 1)-level of QDLi (Li2)
UMi2Li3 Between (2, 1, 1)-level of QDMi (Mi2) and (2, 2, 2)-level of QDLi (Li3)

Through these interactions, an optical excitation generated at QDS is trans-
ferred to the lowest energy levels in the largest-size QD, namely the energy level
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LL1 or LR1. However, when LL1 and LR1 are occupied by other excitations, the in-
put excitation generated at S 1 should be relaxed from the middle-sized QD, that is,
ML1 and MR1. The idea of the QD-based decision maker is to induce state-filling
at LL1 and/or LR1 while observing radiations from ML1 and MR1. In Sec. 2, we
describe the detailed dynamics of such a system.

2 Dynamics of Excitation Transfer in a Five Quantum Dot
System

Here we analyse the dynamic behaviour of the system based on a density matrix
formalism assuming optical near-field interactions between these five dots. For
simplicity, we assume one excitation system. There are in total 11 energy levels
in the system: S 1 in QDS ; ML1 and ML2 in QDML; LL1, LL2 and LL3 in QDLL;
MR1 and MR2 in QDMR; LR1, LR2 and LR3 in QDLR. Therefore, the number of
different states occupying these energy levels is 12 including the vacancy state, as
schematically shown in Fig. 1(c).

The optical near-field interaction between energy levels E1 and E2 is repre-
sented by UE1E2 ; for instance, the interaction between the (1, 1, 1)-level of QDS

(S 1) and the (2, 1, 1)-level of QDML (ML2) is denoted by US 1 ML2 . The radiative
relaxation rates from S 1, Mi1, and Li1 are given by γS 1 , γMi1 and γLi1 , respectively.
The quantum master equation of the total system is then given by [8]

dρ(t)
dt

= − i
~

[Hint, ρ(t)] (4)

+
∑

i=S 1,ML1,MR1,LL1,LR1

γi

2

(
2Riρ(t)R†i − R†i Riρ(t) − ρ(t)R†i Ri

)
+

∑
i=ML2,LL3,LL2,MR2,LR3,LR2

Γi

2

(
2S iρ(t)S †i − S †i S iρ(t) − ρ(t)S †i S i

)
,

where the interaction Hamiltonian is given by Hint. Let the (i, i) and ( j, j) elements
of ρ(t) be the probabilities of the two states that are transformable between each
other via an optical near-field interaction denoted by Ui j. Then, the (i, j) and ( j, i)
elements of the interaction Hamiltonian are given by Ui j. The matrices Ri (i =
S 1, ML1, MR1, LL1, LR1) are annihilation operators that respectively annihilate
excitations in S 1, ML1, MR1, LL1 and LR1 via radiative relaxations. The matrices
R†i (i = S 1, ML1, MR1, LL1, LR1) are creation operators given by the transposes of
the matrices of Ri. The radiative decay times γ−1

LL1
= γ−1

LR1
= 1 ns, γ−1

ML1
= γ−1

MR1
= 2

3
2

× 1 ∼ 2.83 ns and γ−1
S 1
= 23 × 1 ∼ 8 ns are inversely proportional to the volumes of

the QDS [9]. The matrices S i (i = ML2, LL3, LL2, MR2, LR3, LR2) are annihilation
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operators that respectively annihilate excitations in ML2, LL3, LL2, MR2, LR3 and
LR2 via sublevel relaxations Γi and populate excitations in the corresponding lower
energy levels. The diagram shown in Fig. 1(c) schematically summarises the state
transitions.

When there are no state-filling induced at LL1 and LR1, the sublevel relax-
ations are assumed to be equally fast, Γi = 10 ps. On the other hand, when control
lights are irradiated to induce state-filling at LL1 and/or LR1, we have to consider
a multi-excitation system in order to calculate the exact dynamics of the system.
Another way of describing the effect of state-filling is that the sublevel relaxation
time increases, for example by a factor of 10, that is, Γ−1

LL2
= Γ−1

LR2
= 10 × 10 ps.

The validity of such an approach has been verified in Ref. [10].
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