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SI Methods
Initial Basic Analysis and Inclusion Criteria.We analyzed the spiking
activity of single neurons and pairs of simultaneously recorded
neurons if at least 15 trials per stimulus condition were recorded.
We calculated the mean number of spikes within two analysis
windows (150–650 ms after stimulus onset for stimulus driven
activity, 500–0 ms before stimulus onset for the spontaneous
activity) and determined the direction of motion that yielded the
highest activity level (labeled preferred direction, PD) and the
activity with stimuli moving opposite to the PD (null direction,
NULL). We then calculated a direction index (DI = 1–(NULL/
PD) after subtraction of spontaneous activity). Only cells that
had a DI > 0.5 were included in the study. In the case of noise
correlation calculation, both cells had to have a DI > 0.5. We
then assessed whether the activity measured with any of the
different directions of motion showed monotonic changes over
time, as this would be indicative of slow drifts, possibly due to
a deterioration of recording quality that would affect our data.
We did this by calculating the Pearson correlation coefficient
associated with a given direction of motion using trial number
(i.e., time) as our independent variable. This yielded 32 corre-
lation coefficients (14 coefficients in the case of the contrast
experiments). If any of these had a P value smaller than 0.05/32
(0.05/14 for the contrast experiments, respectively, accounting
for multiple comparisons), the cell was excluded from further
analysis, as a slow drift was present. For cells to be included into
the noise correlation analysis, both neurons had to show a DI >
0.5, and their PD had to be within 45°, and neither showed ev-
idence of slow drifts. For this analysis the PD was assessed dif-
ferently than described above (DI calculation). Namely, based
on the activities associated with all eight directions of motion, we
calculated the PD vector according to:
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whereby acti represents the activity associated with a given di-
rection of motion elicited by a grating stimulus, and i corre-
sponds to the eight different directions of motion. X and Y are
the vector components in polar coordinates, from which the
vector angle was calculated. If the vector angles for the two
recorded cells were within 45° from one another, the cells were
analyzed further.

Single Cell Example. Fig. S1 shows the spiking activity of an ex-
ample single neuron. Fig. S1A displays the spiking activity and
associated firing rate for stimuli moving in different directions.
The resolved Fano factor (FF) for the different stimulus types is
shown in Fig. S1B. Note that the example cell presents most of the
characteristics of the population activity, albeit in a noisier way.

Pooling Across Different Neuronal Response Types. The middle
temporal (MT) visual area contains pattern and component cells,
which exhibit different responses when confronted with plaid
stimuli. Pattern cells respond with a very similar tuning curve to
grating and plaid stimuli, whereas component cells show typically

some bilobed tuning when confronted with plaid stimuli, as they
respond most strongly when one of the plaid components moves
in PD. Thus, the various plaid stimuli used in the direction of
motion experiment drive component and pattern cells differently.
It might therefore be argued that the tuning of the FFs and noise
correlation is largely due to the responses from, for example,
component cells (e.g., due to the bilobed responses/tuning curve,
or vice versa from pattern cells because of the lack of it). How-
ever, the argument of different tuning curves does not apply to
conditions when the grating stimulus was presented. Importantly
we also show the FF tuning for the grating stimulus condition.
Thus, the effect seen in our data cannot be explained by assuming
that there was different stimulus drive in pattern and component
cells when plaid stimuli were presented.
Our rationale for pooling pattern and component (and un-

classified cells) is also based on the fact that MT cells form
a continuum from pattern to unclassified to component cells.
Unclassified cells constitute at least one-third of the population
when using 135 degrees (deg) plaids (as used in our experiments).
If we subdivided our sample into groups of ∼one-third (com-
ponent, unclassified/ pattern), we would end up with ∼14 cells in
each group, which does not allow for meaningful analysis of
population tuning pattern. Finally, if component cells did behave
differently from pattern cells, and one group did not show the
type of tuning we report here, then it would mean that the other
group shows the tuning even more prominently.
We nevertheless assessed whether FF tuning might differ be-

tween extremes of the component–pattern classification. To this
end we calculated the component pattern index (CPI) for each
cell, and rank ordered these indices. We first calculated the
partial correlation for the pattern and component predictions as
previously described (1), using the activity in the response win-
dow from 150 to 650 ms after stimulus onset. The pattern and
component predictions (Rp and Rc) are calculated as follows:
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whereby rp is the correlation of the data with the pattern pre-
diction, rc is the correlation of the data with the component pre-
diction, and rpc is the correlation between the two predictions.
The CPI is then calculated as:

CPI =
Rc −Rp

2
:

More negative values indicate that cells were more pattern-like
and positive values the opposite. We are aware that our stimuli
were not ideally suited to make the pattern component classifica-
tion, as they were not sinusoidal stimuli. Therefore, plaid stimuli
had motion energy in directions intermediate to the compo-
nent motion (to a various degree depending on the plaid; inten-
tionally so). To avoid dependence of the CPI on the different
plaid patterns, we used the noncoherent plaid responses to cal-
culate the CPI.
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We rank ordered the CPI and subdivided our data into three
groups of 10 cells each. One group consisted of the 10 cells with
the lowest CPIs (most pattern-like), one group covered the
middle ground (median 10 CPIs)—that is, they were least clas-
sified in terms of component–pattern cell type—and finally a
group consisted of 10 cells with the largest CPIs (most com-
ponent-like). Note that this classification does not mean the cells
in the pattern-like or component-like groups were genuine pat-
tern or component cells, as a different classification would be
needed to make that classification.
We then calculated the FF tuning for these three groups when

the grating stimulus was presented. The results are shown in Fig.
S2. From the figure it appears that M-shaped variance tuning is
present in all three cell classes. Visual inspection suggests that the
least classified cell group shows the strongest tuning, but the other
cell groups equally show some evidence of M-shaped tuning.
The tuning in neither of the cell groups individually was signif-
icant, but that is likely due to the small sample size available for
this breakdown.

Nonnormalized Population Activity. Fig. S3 presents the nonnor-
malized mean population activity for different stimulus directions
and for each stimulus type. Neuronal activity peaks around the
PD. For anti-PDs 50% of the cells (21 of 42) significantly decrease
the firing rate with respect to its baseline level (t test, P < 0.05),
a feature that is captured by the computational model.

Nonnormalized Variance. Fig. S4 presents the nonnormalized
population variance for different stimulus directions and for each
stimulus type. For comparison, the total variance predicted by the
model is also shown. Note that, in the computational stochastic
model, we concentrate on the statistics of the underlying firing
rate and assume that spikes are generated via a Poisson process.
Thus, the variance of the underlying rate adds an extra variability
to the one expected for a Poisson process (for which the variance
equals the rate). This is supported by the observation that em-
pirical FFs are >1—that is, more variable than a homogenous
Poisson process. The excess of variance is shown in Fig. 1B, as
measure by the FF. As shown in the main text, in both the data
and the model, the extra variability is higher for intermediated
direction preferences (as shown in Fig. 1B and Fig. 5 D and I).

Neuronal Tuning to Contrast Modulated Stimuli. We tested whether
the tuning of the FF could reflect a nonlinear relationship be-
tween variance and mean firing rate rather than direction tuning
per se. For this, we investigated the tuning of MT neurons to
moving stimuli of different contrasts (Fig. S5; see also Fig. 1D–F).
We analyzed the FF and the firing rate variations in a dataset (50
single cells) where the luminance contrast of sinewave gratings
was systematically manipulated. These either moved in preferred
or antipreferred motion direction. FFs decreased as stimulus
contrast increased for both preferred and antipreferred motion
directions. Importantly, the FF changes were monotonic through-
out: there was no increase of FFs at intermediate firing rates.
Thus, the tuning of FF found for different motion directions is
not a by-product of a nonlinear dependence between FF and
firing rate that makes FFs higher for intermediate firing rates.

Contrast Manipulation. In our contrast experiment, animals fixated
a small target as described above during a 500-ms prestimulus and
a 1,000-ms stimulus period. Visual stimuli were generated using a
Sergent Pepper Graphics board (Number Nine Computer Corp.:
640 × 480 pixel resolution, 60 Hz frame rate) residing in a Pen-
tium-based PC, and were displayed on a 20-inch analog red-green-
blue (RGB) monitor (Sony GDM 2000TC, 60 Hz, noninterlaced).
The outputs of the red and green guns were combined, such that
a resolution of 12 bits per pixel was achieved (2). This manipu-
lation allowed for the presentation of contrasts on the monitor

that were low enough to obtain luminance contrast thresholds
(see refs. 3, 4 for additional details). Luminance contrasts used
were 0.25%, 0.5%, 1.0%, 2.0%, 4.0%, 8.0%, and 16.0% (Mi-
chelson contrast).

Calculation of Trial-by-Trial Spike Count (Noise) Correlation. For each
stimulus condition we determined the number of spikes elicited by
neuron 1, and the number of spikes elicited by neuron 2 and
calculated the sample correlation coefficient rc according to:

rc =
Pn

i= 1ðxi − hxiÞðyi − hyiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1ðxi − hxiÞ2Pn

i= 1ðyi − hyiÞ2
q ; [S3]

where xi and yi are the spike counts of each neuron on trial i,
<x> and <y> are the corresponding sample means, and n is the
number of trials recorded. The correlation was corrected by
subtracting the shift–predictor correlation, which is simply the
correlation (as calculated above) between the activity recorded
from neuron 1 for trial i = 1, 2, . . ., n–1 and from neuron 2 in
trial j = i+1 = 2, 3, . . ., n, whereby trial i = n in neuron 1 was
paired with trial j = 1 in neuron 2.

Spike Sorting.Action potentials of single neurons were isolated
using an Alpha-Omega online spike sorter, whereby a template-
matching algorithm generated error histograms (EHs) for each
spike. Unimodal EH with the far flank of the distribution re-
turning to baseline was an indication of a perfectly isolated
cell. We only included cells that fulfilled this criterion (as
assessed online). We did not store the waveforms at the time of
recording.

Computational Model. We studied the dynamics of M intercon-
nected populations of neurons using the following rate-based
model. Within this model, each neuron transforms rate inputs
(u) into an output rate (r). The dynamics are given by the fol-
lowing Langevin equation:
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where ri
m(t) is the firing rate of unit i (1≤i≤Nm) from population

m (1≤m≤M), Nm is the size of population m, and M the number
of populations. H(u) is the transfer function of the neurons, with
Θ(u) being the unit step Heaviside function. The parameter
a controls the gain of H, and it is set to a = 10. The saturating
behavior of H captures the effect of refractoriness of biolog-
ical neurons. The neurons are all-to-all connected by a connec-
tivity matrix W = {wmn}, where wmn is the coupling between
neurons from population m and n. Intrinsic noise, ξi(t), is addi-
tive and white:

hξiðtÞi= 0 ;
	
ξi
�
t
�
ξj
�
t′
�


= β2δijδ
�
t− t′

�
; [S7]

where the angular brackets <.> denote the average over realiza-
tions and δij is the Kronecker’s delta symbol.
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All neurons from a given population receive an external input
Im(t) to which input extrinsic noise, δI, is added and is given by:

hδIiðtÞi= 0 ;
	
δIi

�
t
�
δIj

�
t′
�


= β2I δijδ
�
t− t′

�
: [S8]

Here we assume that the extrinsic noise is sufficiently small, so
that, after Taylor expansion, Eq. S4 can be written as: τm _rmi =
− rmi +H½umi �+ ∂HðumÞ

∂u δIi + ξi.
For simplicity, we set τm = 1. Thus, the unit of time is the time

scale of the rate of all neurons that is assumed to be equal to 10
ms. To get firing rates in the range of biological neurons, we
multiply the rate variables by 60.
We studied a model in whichM neural populations are arranged

on a ring, so that they are labeled by a unique angle θ= 2π(m–1)/
M, where 1≤m≤M. In this “ring model,” the interaction between
populations θ and θ′ depends on θ–θ′ and is given by: W(θ,θ′) =
J0+J2cos(θ–θ′), where J0 represents a global uniform coupling and
J2 is the magnitude of the spatial interaction (5).
In stimulus condition, all neurons from population θ receive an

external input Iθ that is broadly tuned around θ* and is taken as:

Iθ =C
�
1− «+ « cos

�
θ− θ p

��
: [S9]

The parameter e represents the degree of angular anisotropy (fixed
to 0.1) of the input and C is associated to the stimulus contrast.

Augmented Moment Method. We used the Augmented Moment
Method (AMM) (6, 7) to express the system of stochastic dif-
ferential Eqs. S4–S6 in terms of three moments of the distribu-
tion of rate variables: μ, the expected mean population firing
rate; γ, the averaged fluctuations of the firing rates of the neu-
rons of a given population; ρ, averaged mutual correlation be-
tween pairs of neurons. The moments are defined as:
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Using the AMM deterministic equations of motion of the moments
can be obtained. Briefly, this method uses the Fokker–Plank
equation to derive equations for <ri

m> and <ri
mrj

n>; then, Taylor
expanding ri

m around μm—that is, ri
m = μm+δri

m
—and keeping

the terms up to <δri
mδrj

n>, the equations of motion of the mo-
ments are derived:
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Note that the equations for γ and ρ are coupled and depend on
the derivative of the transfer function and the connectivity,
and thus are shaped by network interactions. Note that for
strongly inhibited populations the derivative of the transfer
function is null and the variance is dominated by the additive
noise—that is, for these populations, the network does not am-
plify the noise.
The level of correlation inside a given population can be

expressed by the synchronization ratio that is obtained by defining
first the quantity:
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h
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By comparing Pm with its expected value P0
m in the asynchronous

state, for which ρmm = γm/Nm and thus P0
m(t) = 2γm(t)[1–1/Nm],

the synchronization is defined by:
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The quantity Sm is equal to zero in the asynchronous state, and it
is equal to 1 in the completely synchronous state in which all
neurons have the same firing rate R(t) (6).

Simulations
Dynamical equations given by the AMM (Eqs. S13–S15) were
numerically integrated using a fourth-order Runge–Kutta
method with time step equal to 0.1. In direct simulations, the
system of stochastic Eqs. S4–S6 was integrated using the Euler’s
method with a time step of 0.05. To mimic slow ongoing fluc-
tuations in direct simulations, the input noise is an exponentially
filtered white noise, with zero mean and deviation σ, defined by
the following Ornstein–Uhlenbeck equation:

τn
dniðtÞ
dt

= − ni
�
t
�
+

ffiffiffi
σ

p
ξi
�
t
�
; [S19]

where τn = 1 s and ξi(t) is uncorrelated Gaussian noise with mean
equal to zero and unit variance.
In direct simulations of the stochastic system, to prevent

negative values of the firing rate, which could arise from additive
noise, we assumed that Eq. S4 represents rate deviations from
a baseline rate r0 = 1 Hz.

FI. To quantify the encoding accuracy of the population response,
we used the FI. Assuming that the network response is well
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described by a multivariate Gaussian distribution, FI can be
written as the sum of two terms: FI = FImean+FIcov (8), where:

FImean = f ′ðθÞTQðθÞ−1f ′�θ� [S20]

and

FIcov
�
θ
�
=
1
2
Trace

�h
Q′

�
θ
�
QðθÞ−1

i2�
; [S21]

where f(θ) and Q(θ) are the tuning function and the covariance
matrix evoked by a stimulus of direction θ, respectively; f′(θ) and
Q′(θ) are the first derivatives with respect to the stimulus direc-
tion; and ZT is the transpose of Z. Note that, because the ring
network is rotation-invariant, FI, FImean, and FIcov are the same
for every θ.

Modeling the Dynamics of Variability Through Pre-Excitation. As
shown in Fig. 1A, the FF of MT direction-selective neurons first
decreased after application of the visual stimulus and then
evolved to a function of stimulus direction. In this section, we
tested whether the computational model can explain the dy-
namics of the FF consisting of (i) a sudden nonselective re-
duction compared with the spontaneous level, followed by (ii)
a tuning of the variability according to stimulus direction. Pre-
vious studies (9, 10) have proposed that a change in the field of
view drives the initial early phasic response of neurons from vi-
sual areas 17/18, which later represents specific features of the
visual scene. Following these studies, we studied the effect on
the trial-by-trial variability of a transient nonselective stimulus,

followed by a stimulus with a particular direction. Specifically,
initially all neurons from all neural population received the same
input, Iθ = I0, corresponding to the spontaneous period; at time
t = 0, the input is augmented equally for all neural populations—
that is, Iθ = I0+ΔI (pre-excitation period); finally all neurons
from population θ receive an external input Iθ that is broadly
tuned around θ* and is given by Eq. S9 (directed stimulus pe-
riod). All network and noise parameters were the same used in
Fig. 5. Fig. S6 shows the response of the network to these con-
secutive inputs, when the network is in the homogeneous and
marginal phases, respectively. In both cases, all neural pop-
ulations elevated their firing rate before settling into a bump
attractor representing the direction of the stimulus (Fig. S6 A
and B). Note that the early elevation of the firing rate (first ∼50 ms
after stimulus onset) is independent of stimulus direction (Fig.
S7, see also Fig. S1A). During the phasic response, the FF is
strongly decreased for all neural populations before presenting
a tuning in response to the directed stimulus (Fig. S6 C and D),
mimicking the time evolution of the profile of FFs similar to one
observed experimentally (Fig. S6 E and F).
An alternative possibility is that the temporal evolution of

neural responses results from internal dynamics. Internal dy-
namics might be governed by single-cell and network features that
are not considered in our simple model, such as adaptation, short-
term synaptic plasticity, excitation–inhibition delays, specific
channel dynamics, and complex interaction between sensory in-
puts and ongoing dynamics. All these possible mechanisms are
not present in our simple model, wherein simple (first-order)
dynamics limits the investigation of nonstationary transients.
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Fig. S1. Neuronal activity and time-resolved FF of an example cell. (A) The different subplots show neuronal activity and peristimulus time histogram (PSTH)
for the stimuli moving in different directions. Each subplot contains four different raster plots, which show the activity for grating stimuli (Top, magenta PSTH),
depth ordered plaids (Upper Middle, red PSTH), noncoherent plaid (Lower Middle, blue PSTH), coherent plaid (Bottom, black PSTH). The center plot shows the
stimulus-dependent tuning curves. The green circle indicates baseline activity level. The red pointer shows the PD for the grating stimulus based on vector
average calculation. (B) Time-resolved FF (color coded) for the different stimulus types (symbols on the left). The color under each symbol refers to the neuronal
activity shown on the histograms and center direction tuning plot in A. The y-axis indicates which stimulus direction was presented; the x-axis shows time after
stimulus onset. FF was calculated in a sliding window of 100 ms length (Methods). The color bars show the values of FFs.
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Fig. S2. FF tuning for different cell types. Averaged FF (±SEM) for different cell types (top to bottom) calculated within the time window from 150 to 400 ms
after stimulus onset relative to preferred motion direction (PD). The dashed line shows average (±SEM) of FF before stimulus onset.
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Fig. S4. Nonnormalized variance. Tuning of activity variance for the MT neuronal population in response to different stimulus directions (plotted along
x-axis). The figure shows population mean variance (y-axis) when coherently moving plaids (Top), noncoherent plaids (Upper Middle), depth ordered plaids
(Middle), and gratings (Lower Middle) were presented (the different stimuli are shown as cartoons on the left). (Bottom) Total variance of the model (i.e., un-
derlying rate variability plus the expected Poisson variance). Same model parameters as for Fig. 5B, J0 = –40, J2 = 32, C = 3, I0 = 2, β = 0.01, σ = 0.3, n = 20, M = 16.
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Fig. S5. Tuning of FFs for different stimulus contrasts. (A, Left) Time-resolved population FFs, indicated by color coding, for the preferred motion and dif-
ferent stimulus contrasts [preferred motion (upper row), replotted here from Fig. 1 to allow for comparison against and antipreferred motion (lower row)]
plotted along the y-axis within each row. FFs were calculated in sliding windows of 100 ms shifted in 10 ms steps. (Center) Averaged FF (±SEM) for different
stimulus contrasts, calculated within the analysis time window indicated by the gray horizontal bar in the Left panel. The dashed line shows average (±SEM) of
FF before stimulus onset. (Right) Normalized mean firing rate (±SEM) for the different stimulus contrasts. The dashed line shows average (±SEM) of activity
before stimulus onset. (B) Same as in A but for antipreferred motion direction. (Left) Time-resolved population FFs for the antipreferred motion and different
stimulus contrasts. (Middle) Averaged FF (±SEM) for the different contrasts of the antipreferred stimulus, calculated within the analysis time window. The
dashed line shows average (±SEM) of FF before stimulus onset. (Right) Normalized mean firing rate (±SEM) for the different contrasts of the antipreferred
stimulus. The dashed line shows average (±SEM) of activity before stimulus onset.

Fig. S6. Dynamics of FF. The time evolution of network response to a transient nonselective stimulus, followed by a directed stimulus, when the network is in
the homogeneous (A, C, and E) and marginal (B, D, and F) phases. (A and B) The transient nonselective (same for all neural populations) stimulus elevates the
firing rate of all neurons (red period), whereas the subsequent directed (gray period) stimulus breaks the symmetry and drives the network into a bump
attractor. (C and D) The FF is strongly reduced in all neural populations after application of the nonselective stimulus and evolves to a function of stimulus
direction during application of the directed stimulus. (E and F) FFs for each neural population, ordered by direction selectivity. Parameters in A, C, and E, J0 =
–40, J2 = 32. Parameters in B, D, and F, J0 = –40, J2 = 33. Other parameters, I0 = 2, ΔI0 = 11, C = 3, β = 0.01, σ = 0.3, n = 20, M = 16.
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Fig. S7. Time-resolved mean activity. The PSTH for the population of recorded neurons for the stimuli moving in preferred and antipreferred motion di-
rection. Colored areas indicate ±SEM. The figure shows the data for grating stimuli.
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