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1. Continuum Theory of Dislocation Scars
Energies. To study stable multidislocation patterns of confined
sheets, we construct a continuum theory of neutral dislocation
scars that decorate the sheet near its compressed boundary. [Note
that hexagonal crystals of circular shape have (at least) six sites
with fewer than four neighbors on their boundary. Such features,
along with any “boundary defects” associated with cutting a cir-
cular boundary through the crystal, however, are completely
screened by the boundary and generate no elastic stresses (similar
to electrostatic charge on the surface of a conductor).] As ex-
plained in the main text, neutral scars take the form of linear
chains of dislocations extending a distance ℓsc along the radial
direction of the sheet from the free edge. For a weakly confined
sheet in which the zone of compression is small ðΔα � 1Þ, dis-
locations remain within a narrow strip near the free boundary,
ℓsc � W . In this limit, the curvature of the sheet edge is small on
the scale of ℓsc, and we may treat the boundary region of the sheet
as an infinite, half-space located at y≥ 0, where the boundary edge
extends infinitely along the x̂ direction, which is parallel to the
Burgers vector b of stable dislocations. Thus, the Euclidean ðx; yÞ
coordinate system approximates the original polar coordinate
system ðr; θÞ over a narrow radial band near the sheet edge
ðr→W − y  ;   x→WθÞ. To compute elastic energies of disloca-
tions, we treat a dislocation as a “dipole” of disclination sources
for stress (aligned along ŷ) subject to vanishing normal stress
at y= 0, a boundary condition that requires “image” defects at
positions reflected through the boundary at y= 0. The self-energy
of a dislocation at distance y from the free boundary is (1)
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where Y is the 2D Young modulus of the sheet, a≈ b is the di-
polar separation of 5–7 disclination pair, and Yb2Ec=ð8πÞ is a
microscopic “core energy” of the dislocation. It is convenient to
write elastic interaction energy between dislocations at x1 and x2 as

Ed
intðx1; x2Þ=

Yb2

4π
+
Yb2

8π
∂y1∂y2V ðx1; x2Þ; [S2]

where V ðx1; x2Þ describes long-range elastic interactions between
disclinations,

V ðx1; x2Þ= jx1− x2j2 ln
 
jx1− x2j
jx1− x2j

!
: [S3]

Here, x= ðx; − yÞ is the location of an image of the defect at x,
which is situated at a reflected position of the defect through the
boundary at y= 0 (note that jx1 − x2j= jx1 − x2j).
Our analysis determines the number nsc and length ℓsc of scars,

and the number N of dislocations per scar, by minimizing Uscars,
Eq. 7. The asymptotic analysis that enables the analytic evaluation
of Uscars relies on the limit of weak confinement ðΔα � 1Þ and—
more profoundly—on the continuum limit b=W � 1. [Although
we assume ðW=RÞ2 ≈ α*γ=Y � 1, i.e., small strains, the asymp-
totic analysis does not explicitly involve the small limit of this
parameter. More precisely, we compute Uscars in two limits:
limW=R→0limb=W→0limΔα→0 and limW=R→0limΔα→0 limb=W→0.] The
parameter range ðΔα � 1; b=W � 1Þ splits into two domains,
each of which is characterized by distinct “dominant balance” of
the triplet fUrelax;Uself ;Uinterg, when one energy becomes negli-

gible compared with the other two. We summarize the details of
this analysis in Table S1, listing the dominant balance in each
domain and the asymptotic behavior of nsc, ℓsc, and N. The primary
interest of this study is on the continuum limit b=W → 0 at a fixed
Δα � 1; hence, we focus below on the right column of Table S1.
The self-energy of a scar follows from summation of the dis-

location self-energies and dislocation pair interactions along a
given scar (located at, say, x= 0):
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where we label dislocation positions along the scar by yi = id,
where d= λ−1k is the dislocation spacing along the scar. To make
progress, we assume the large-N limit and approximate the sums
by integration along the scar length, so the first sum becomes
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where λk =N=ℓsc. (We derive the energetics of scars by assuming
N � 1, although the continuum theory ultimately predicts an
optimal number of dislocations per scar of order unity. This
affects only the numerical prefactors of the estimated energies
and does not have any qualitative impact on our analysis.) Be-
cause of the singular nature of interactions for yi = yj, we must
take the continuum limit of the double sum in Eq. S4 carefully.
We divide the scar length into N domains of width d extending
over id− d=2< yi < id+ d=2, and replace the value of the sum-
mand by the mean value along that interval:

∂yi∂yjV ðyi; yjÞjyj=jd ’ λk
Zjd+d=2

jd−d=2

d~yj∂yi∂~yjV ðyi;~yjÞ: [S6]

Making this substitution, and taking the upper limit of the first yj
integral halfway between dislocation at yi and yi − d, we find
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where we have taken the lower limits of both integrals to y= 0,
introducing negligible corrections to the assumed large N limit.
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Combining the results of Eqs. S5 and S7 in Eq. S4 and multiply-
ing by the total scar number, we arrive at the form of scar self-
energy Uself of Eq. 10.
Let us now consider the relative size of Uself and Urelax, Eqs. 10

and 9, respectively. Both energies represent additive scar energies
and thus are linear in nsc, but the cost Uself is quadratic in N and
b whereas the gain Urelax is linear in Nb and quadratic in ℓsc. Be-
cause the minimal dislocation number is N = 1 and the maximal
scar length is ℓsc = 3ℓaxi ∼Δα, we conclude that Uself � jUrelaxj in
the asymptotic domain ðΔαÞ2 � b=W � 1. Because both Uself and
Uinter are positive costs, we obtain that Uscars >Uaxi in that domain,
implying that the axisymmetric state is stable to scars if the com-
pression level is sufficiently small. Turning now to the comple-
mentary domain, b=W � ðΔαÞ2 � 1, the above considerations
imply Uself � jUrelaxj, and we conclude that the dominant balance
in the triplet fUself ;Uinter;Urelaxg consists of the last two terms.
Let us now compute Uinter, recalling that it must satisfy

Uinter � Uself . We express Uinter as a sum over scar–scar inter-
action energies, EinterðxÞ, the elastic interaction between scars
separated by a distance x along the edge. Evaluating the sum
over dislocation pair interactions follows a method similar to
that of the self-energy of scars:

EinterðxÞ=
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Comparing now the energies Uself and Uinter, we obtain the
relation Uinter ∼ ðnsc ℓsc=W ÞUself . The geometric meaning of this
relation is depicted in Fig. 1D, which shows that scars interact
strongly within a lateral distance or order ℓsc. Because the above
asymptotic analysis (right column of Table S1) implies Uinter �
Uself , we find that the continuum limit of weak compression,
b=W � ðΔαÞ2 � 1, is characterized by a dense distribution of
scars: nsc � 1=Δα. This proves the asymptotic relation noted in
Eq. 8. A more systematic proof of this relation requires evalu-
ation of Uinter as the sum over EinterðxÞ in the two limits: (a)
“dilute” scars: x � 2ℓsc, where we find that scar interactions fall
to zero at Einter ∼ 1=x2, and the resulting Uinter � Uself , in con-
tradiction to the asymptotic requirement Uinter � Uself , and (b)
“dense” scars: x � 2ℓsc. In this limit, integrating EinterðxÞ over
a linear edge density of scars nsc=ð2πW Þ and multiplying by the
scar number leads to the form of scar interaction energy Uinter of
Eq. 11, which satisfies Uinter � Uself as required.

Stress Collapse. In this section, we briefly derive the stress profile
near the edge of a weakly confined sheet in the presence of an array
of nsc scars of length ℓsc composed of N dislocations, assuming
again that scars remain sufficiently close to the free boundary
that we may approximate the sheet geometry as an infinite half-
space ðy< 0Þ. The total stress derives from the superposition of the
stress in the axisymmetric state and the dislocation-induced stress,
σscars = σaxi + σdis. We compute σdis in the continuum limit where we
neglect fine scale variations of dislocation density within the scar-
red domain, approximating the distribution as a uniform areal
density of dislocations ρ0 = nscN=ð2πW ℓscÞ within the region
y< ℓ. In addition to the conditions of force balance, the stress is
governed by the compatibility condition (2) modified by the dis-
tribution of dislocations ρð yÞ= ρ0θðℓ− yÞ,

Y−1∇2
�
σdisxx + σdisyy

�
= − b∂yρðyÞ: [S9]

In the continuum approximation, dislocation stress is uniform
along the edge direction and σdisxy = 0, so the equations of force
balance reduce to

∂yσdisyy = 0: [S10]

Boundary conditions require that σdisyy ðy= 0Þ= 0; hence, Eq. S10
implies σdisyy = 0. From Eq. S9, the discontinuity of dislocation
density at the edge of the scar zone requires discontinuous de-
rivatives of the edge stress,

∂yσdisxx

��
y>ℓsc

−∂yσdisxx

��
y<ℓsc

=Ybρ0: [S11]

Because the dislocation stress vanishes far from the boundary (as
y→∞), ∂yσdisxx jy>ℓsc = σdisxx ðy> ℓscÞ= 0. The edge (or hoop) compo-
nent of dislocation-induced stress for the multiscar geometry
then has the form

σdisxx =


Ybρ0ðℓsc − yÞ y< ℓsc
0 y> ℓsc

: [S12]

For minimal energy scars, dislocation-induced stress perfectly
cancels the edge (hoop) component of σaxi within the zone of
compression y< ℓaxi. To see this, we can take ℓsc = ℓaxi and ρ0 =
b−1ðY=γÞðΔαÞ=ℓaxi, which follows from the “slaving condition” of
Eq. 12. Comparing Eq. S12 with the axisymmetric stress of Eq. 5,
we see that σdisxx ðy< ℓaxiÞ= − σaxixx ðy< ℓaxiÞ, resulting in collapse of
the compressive stress, σscarxx ðy< ℓaxiÞ= 0.

2. Compression-Free Stress Field: Spherical Substrate
The compression-free stress field must satisfy σii ≥ 0, where i
labels the two principle directions of the stress tensor. This
type of stress field was first studied as the “membrane limit” of
wrinkle patterns in very thin sheets (3–6). For axisymmetrically
stretched sheets, such as the one addressed in the current
study, the two principle directions are everywhere r̂; θ̂ and the
compression-free stress field is characterized naturally by a
two-zones structure, similar to the stress of the axisymmetric
state, Eq. 2: (i) an inner zone ð0< r<LÞ, where both radial and
hoop stresses are tensile: σrr > 0; σθθ > 0, and (ii) an outer an-
nulus ðL< r<W Þ, where the radial stress is tensile and the hoop
stress vanishes. (The shear stress σrθ vanishes in both zones.) The
value of L is found by matching the stress between the two zones.
(Details of this procedure may be found in ref. 6, which ad-
dresses the planar stretching of an annulus under radial tension
gradient.)

� In the inner zone, where the stress is purely tensile, the sheet is
at an axisymmetric state; hence, the stress field there may be
obtained from σaxiðr; αÞ (Eq. 2) by replacing

W →L; γ→ σrrðLÞ  ; α→ α = ½Y=σrrðLÞ� ·ðL=RÞ2; [S13]

where L; σrrðLÞ are two unknowns (to be found below). Hence,

ð0< r<LÞ:   σθθðrÞ=σrrðLÞ= α
h
1− 3ðr=LÞ2

i.
16+ 1 [S14a]

ð0< r<LÞ:   σrrðrÞ=σrrðLÞ= α
h
1− ðr=LÞ2

i.
16+ 1: [S14b]

� In the outer annulus, L< r<W , where σrθ = σθθ = 0, the force
balance in the radial direction r̂ becomes ∂rðrσrrÞ= 0, and using
the boundary condition σrrðr=W Þ= γ, we obtain

ðL< r<W Þ: σrr = γW=r; σθθ = 0: [S15]
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� The length L and the stress σrrðLÞ are determined by requiring
both stress components σrr; σθθ to be continuous at the bor-
derline r=L between the two zones, namely as r→L+ and
r→L−. Continuity of σθθ implies that σθθðrÞ in the axisymmet-
ric zone ðr≤LÞ approaches zero at r=L, and therefore the
effective confinement parameter α in Eq. S13 must equal the
critical confinement value α* = 8 at which compression
emerges. Thus, the continuity of the radial and hoop stresses
yields two equations for L and σrrðLÞ:

σrrðLÞ= γW=L [S16]

α =
Y

σrrðLÞ
�
L
R

�2

= α
�
L
W

�3

= α*: [S17]

Hence we obtain the radius of the unwrinkled region:

L=W
�
α*
α

�1=3

: [S18]

For the limit of weak confinement addressed in our study, we
expand Eq. S18 around α* and find

L≈W
�
1−

1
3
Δα
�
; [S19]

which is identical to ℓaxi (Eq. 4).

3. Wrinkle Pattern
The nature of the subdominant wrinkle energy is elucidated by
first considering the force balance in the normal direction to the
sheet. For our study, in which the slope ∼W=R � 1, we use the
Föppl–von Kármán (FvK) framework, taking the two tangential
directions to be the radial r̂ and azimuthal θ̂ at the plane of the
undeformed sheet; hence, the normal direction n̂ may be ap-
proximated by the perpendicular ẑ to that plane. The normal
force balance (first FvK equation) becomes

BΔ2ζ− σrr∂2r ζ−
2
r
σrθ
�
∂r −

1
r

�
∂θζ−

1
r2
σθθ
�
∂2θζ+ r∂rζ

�
= −K

	
ζðr; θÞ− ζsphðrÞ



;

[S20]

where the Laplacian Δ≡∂2r + 1
r ∂r +

1
r2 ∂

2
θ and ζsphðrÞ≈ r2=2R is the

original state of the spherical substrate. (A Winkler foundation
with K ≈Es=H characterizes a rigid sphere of radius R covered
by a compliant layer of Young modulus Es and thickness H � R.
The local response of this model captures qualitatively the more
complex, nonlocal response of homogenous solid substrates.)
Consider now the wrinkle pattern,

ζðr; θÞ= ζ0ðrÞ+ f ðrÞ cosðmθÞ; [S21]

which we address in the singular, high-bendability limit ðeb → 0Þ,
where f ðrÞ→ 0 and m→∞ such that the product mf ðrÞ remains
finite as eb → 0 (the slaving condition, Eq. 19). Substituting this
form in the force balance, Eq. S20, we obtain an equation for the
oscillatory term ð∝ fcosðmθÞÞ and an equation for the nonoscil-
latory one, which does not involve f ðrÞ.
� The nonoscillatory equation is

B
�
d2

dr2
+
1
r
d
dr

�2

ζ0 − σrr
d2

dr2
ζ0 −

1
r
σθθ

d
dr

ζ0 = −K
	
ζ0 − ζsphðrÞ



:

[S22]

In the high bendability regime ðeb � 1Þ, the force associated
with radial bending ð∼Bζ0″″Þ is negligible with respect to the

other forces. Furthermore, for sufficiently rigid substrates, Eq.
S22 simply forces negligible deviation of the radial profile ζ0ðrÞ
from the original spherical shape of the substrate, ζ0 ≈ ζsphðrÞ,
and the corresponding components of the stress field σrrðrÞ;
σθθðrÞ then are given by the compression-free form described
above, Eqs. S14, S15, and S18). [Dimensional analysis, to be
presented elsewhere, shows that the low-deformability regime,
where ζ0ðrÞ≈ ζsphðrÞ correspond to ~K =KR2=Y � 1, thus lim-
iting the current analysis to the parts painted in solid colors in
Fig. 2 of the main text.]

� The oscillatory part of Eq. S20 takes a simplified form in the
high-bendability regime, where j∂θζj∼ jmf ðrÞj � jdf=drj, and the
radial stress σrr ≈ γW=r (Eq. S15). Thus, we obtain the equation

B
m4

r4
f − σrr

d2f
dr2

+Kf = −
m2

r2
σθθ f ; [S23]

where the right-hand side is the destabilizing force and the
left-hand side consists of the three relevant restoring forces,
associated with the bending rigidity of the sheet, tension in the
radial direction, and stiffness of the spherical substrate. The
energetic costs associated with these restoring forces, are, re-
spectively,

1
4

ZW
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rdr   B
m4f 2

r4
)Ubend ∼YW 2eb

�γ
Y

�2
ðΔαÞ2m2; [S24a]

1
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L

rdr   σrr
�
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dr

�2

)Utens ∼YW 2
�γ
Y

�2
m−2; [S24b]

1
4

ZW
L

rdr   Kf 2 )Usubst ∼YW 2 ~K
�γ
Y

�2
ðΔαÞ2m−2; [S24c]

where we used the slaving condition, Eq. 19, together with
the estimated area of the wrinkled zone ðRWL rdr∼W 2ΔαÞ and
the estimated radial derivative jdf=drj∼ f=ℓ∼ f=WΔα to ex-
press the energies as single-variable functions of the wrinkle
number m.

As was noted already by Cerda and Mahadevan (7), the fact
that Usubst and Utens scale similarly with the wrinkle number
ð∼m−2Þ implies that the subdominant wrinkle energy Usub

wrink is
governed by a balance of Ubend and maxfUtens;Usubstg, such that
the wrinkle number m that minimizes Usub

wrink may be expressed as

m∼W
�
Keff=B

�1=4
; Keff =max

n
K; γ=ðWΔαÞ2

o
: [S25]

The parameter Keff is the effective stiffness of a supported, uni-
axially stretched sheet to the formation of wrinkles of length
ℓ∼W ðΔαÞ (7).
Implementing this principle for our problem (using the above

estimates in Eq. S24), we find that the subdominant wrinkle en-
ergy Usub

wrink and the number of wrinkles m can be conveniently
expressed by defining the bendability and deformability parame-
ters (Eqs. 21 and 22), leading to the three characteristic param-
eter regimes, denoted W1–W3 in the text. [A more careful
analysis of this regime yields corrections ∼ logðeÞ to the number
m and the energy Usub

wrink that may be ignored in the current
analysis. Also, note that as Δα→ e1=4, Eq. 24 implies m∼ e−3=8, in
accord with the near-threshold analysis (6).] We reemphasize that
this wrinkling analysis applies to the asymptotic parameter range
ðe � 1; ~K � 1;Δα � 1Þ, which corresponds to very thin sheets
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(because B∼ t3) or large radial tension, a stiff substrate, and weak
confinement. [For ~K < 1, the spherical substrate flattens beneath
the sheet (17), invalidating our calculations of the axisymmetric
energy Uaxi and the dominant energy Udom of the compression-
free stress.]

4. Hyperbolic Substrate
In this section, we briefly analyze the axisymmetric and com-
pression-free stress fields for the circular sheets confined to
a hyperbolic surface of constant negative Gaussian curvature,
G= −R−2. As in the case of the sheet on the spherical substrate,
we consider the case of a finite radial tension at the boundary of
the sheet σrrðr=W Þ= γ> 0. In contrast to a spherical cap
ðG=R−2Þ, the saddle’s shape is not axisymmetric. Nevertheless,
as long as the Gaussian curvature is axisymmetric (as is the case
for a constant G), the stress field has axisymmetric solutions,
which do not involve shear, and we expect both wrinkled (scar-
red) and unwrinkled (unscarred) states of the sheet to be de-
scribed by such stress fields. We first will describe the stress field
of the featureless state (unwrinkled, unscarred), which is the
analog of the compressed, axisymmetric state of the spherical
cap (Fig. 1E), and then we will discuss the collapse of stress by
the formation of wrinkles or scars.

Unwrinkled, Unscarred State. Considering the analogous state of
the axisymmetric state of a sheet on a spherical cap (Eq. 2), we
note that the sign inversion of substrate curvature affects a sign
inversion (compression ↔ tension) of the “geometric” part of
the stress profile (the part that is proportional to r2). Thus,
we find

σaxiθθ ðrÞ=γ=−α
h
1− 3ðr=W Þ2

i.
16+ 1

σaxirr ðrÞ=γ=−α
h
1− ðr=W Þ2

i.
16+ 1;

[S26]

where we retain the same definition of confinement α=
ðW=RÞ2ðY=γÞ. Unlike the positive curvature case, both radial
and hoop components of stress have regions of tension and com-
pression (Fig. 1G). For negatively curved substrates, there is
a critical confinement, α* = 16, below which compression is elim-
inated from the axisymmetric state [namely, for sufficiently large
radial tension at the edge, σrrðW Þ= γ>YW 2=16R2, both radial
and hoop directions are under tension everywhere in the sheet].
For α> α*, there are three zones determined by the radial scales:

Laxi
θ ðαÞ=W

1ffiffiffi
3

p ð1− α*=αÞ1=2; Laxi
r ðαÞ=W ð1− α*=αÞ1=2; [S27]

which describe, respectively, points of vanishing hoop and radial
stress:

i) r<Laxi
θ , for which σaxiθθ < 0 and σaxirr < 0;

ii) Laxi
θ < r<Laxi

r , for which σaxiθθ > 0 and σaxirr < 0;

iii) r>Lr , for which σaxiθθ > 0 and σaxirr > 0.

Collapse of Hoop Stress. In analogy to section 2, we expect that the
stress field of the wrinkled or scarred state (in the respective high-
bendability or defectability regime) consists of two zones: an outer
zone at L< r<W , where the radial stress is tensile ðσrr > 0Þ such
that the boundary condition σrrðW Þ= γ is satisfied, and an inner
zone 0< r<L. We now consider the possibilities by which such
a stress field (enabled by wrinkles or scars) can lower the high
energetic cost of Eq. S26.

� Assume first that hoop tension σθθ is relaxed by scars that
develop in the outer zone, such that the stress field is charac-

terized by a profile similar to that of Eq. S15, where the only
nonvanishing stress component is the radial tension σrr . Again,
radial force balance and the boundary condition σrrðW Þ= γ
give rise to radial tension σrrðrÞ= γW=r, which increases with
the distance from the edge of the sheet. Obviously, such a ra-
dial stress profile, which is implied by assuming a compression-
free zone (where σθθ = 0) cannot exist in the whole sheet be-
cause of the divergence σrr ∼ r−1 as r→ 0. Hence, there must be
an inner zone (r<L for some 0<L<W ) where σθθ does not
vanish. Radial force balance at r=L requires σrrðLÞ= γW=L;
hence, the radial stress cannot collapse at the inner zone.
Hence (similar to section 2), the stress in the inner zone
is described by Eq. S26 under the substitution W →L;
γ→ γW=L. The resulting stress, for some value of 0<L<W ,
is plotted in Fig. S1. Simply put, for any finite radial tension at
the boundary, there is no solution that collapses hoop tension
everywhere in the sheet. The actual value of L must be de-
termined here by minimizing the dominant energy over all
possible values of 0<L<W , similarly to ref. 6. This minimi-
zation procedure involves some subtleties (in comparison with
ref. 6, where L marks a compression-free rather than tension-
free zone), and we will not discuss it further here. We note,
however, that comparison between the profiles in Fig. S1 and
Fig. 1H indicates a higher level of stress in the hoop tension-
free stress in comparison with the compression-free stress
(which we discuss below). It thus is plausible to expect that
collapse of hoop tension is not the favorable energetic mech-
anism to relax stress in a stretched sheet on a saddle.

� Next, we consider the collapse of hoop stress for the negatively
curved saddle substrate within an inner annulus r<L in the
sheet (shown in Fig. 1H). Because radial force balance re-
quires rσrr to be constant when σθθ = 0, finite stress at r→ 0
also requires radial stress to vanish

ðr<LÞ: σrr = σθθ = 0: [S28]

In the outer region, boundary conditions and axisymmetry re-
quire that the stress be described by Eq. S26

ðL≤ r<W Þ: σrr = σaxirr ; σθθ = σaxiθθ : [S29]

Matching the radial stress at the boundary between the two
regions σrrðr=L−Þ= σrrðr=L+Þ, we find that

LðαÞ=W =Laxi
r ðαÞ=W = ð1− α*=αÞ1=2: [S30]

We find that for the negative-curvature saddle substrate, the
compression-free zone extends beyond the region of the hoop
compression of the unwrinkled, unscarred state, to the same
size as the zone of radial compression. We note the unusual
appearance of a discontinuity in σθθ at r=L. Such a disconti-
nuity will give rise to a “boundary layer” that smooths the sin-
gular feature and contributes to the subdominant costs of
wrinkle or scar patterns (see ref. 9 for the behavior of a con-
ceptually similar boundary layer at the end of the wrinkled zone
in a stretched sheet).

Other Negatively Curved Substrates. We chose to study here the
stretching of a sheet on a saddle-shaped substrate as an example
of the class of hyperbolic (negatively curved) substrates. This
choice is motivated by a recent theoretical study (10) and, im-
portantly, by the intimate relation between the stress field of the
sheet in this example and the stress field of a sheet on a spherical
cap. Comparison between Fig. 1H and Fig. S1 suggests that
under conditions of stretching at the boundary ðσrrðW Þ= γ> 0Þ,
the sheet will tend to collapse hoop and radial compression away
from the boundary, rather than collapse hoop tension near the
boundary. This conclusion is in agreement with the observations
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in ref. 10. It is important to note, however, that we do anticipate
situations in which a collapse of tension (near or away from
boundaries) is energetically favorable. In the context of a sheet
on saddle, such a scenario may occur if the sheet in subjected to
finite radial compression at the boundary (although it may be

doubted whether such a system is stable against delamination of
the sheet from the substrate). Attaching a sheet to other types of
negatively curved substrates also may lead to the formation of
a pattern in which tension collapses, such as the catenoidal in-
terfaces studied in ref. 11.
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Fig. S1. Dominant stress pattern achievable by collapse of hoop stress ðσθθ = 0Þ in an annular zone L< r <W for a constant, negative-curvature substrate.

Table S1. Dominant balance and asymptotic limits

Parameter regime ðΔαÞ2 � b=W � 1 (no
scars)

b=W � ðΔαÞ2 � 1
(scars)

Energetic
dominance

Uself ∼Uinter � jUrelaxj jUrelaxj∼Uinter � Uself

Energetic stability Uscars >Uaxi Uscars <Uaxi

ℓsc=W →Δα=3
N →constant
nsc ∼ ðW=bÞðγ=YÞ
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