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SI Materials and Methods
In this section, additional information is provided on the methods
used in the paper to characterize the river flow regimes and their
exposure/sensitivity to climate change.

Analytical Characterization of the Flow Regime. The basis of the
analytical model on which the classification of flow regimes pro-
posed in the paper is built is a stochastic description of daily stream
flow dynamics, which are assumed to result from the superposition
of a sequence of flow pulses triggered by precipitation. In particular,
the sequence of streamflow-producing rainfall events during a given
season is assumed to be a suitable subset of the overall rainfall. This
subset, often termed excess precipitation, is created by the events
bringing enough water to fill the soil–water deficit resulting from
plant transpiration, driving the soil moisture in the unsaturated
region above the field capacity. The overall rainfall forcing can
typically be assimilated to a marked Poisson process with fre-
quency λp and to exponentially distributed depths with average
α (1). As a consequence, the sequence of events producing
streamflows can also be approximated by a Poisson process similar
to the main rainfall, although characterized by a reduced fre-
quency, λ< λp (2). The ratio λ=λp expresses the ability of the near-
surface soil moisture to filter the incoming rainfall forcing, and it
can be analytically expressed as a function of climate, soil, and
vegetation attributes (Eq. S3). When precipitation determines an
excess of water in the root zone, such excess water is eliminated
through the catchment hydrological response. If the subsurface
catchment storage is assumed to behave like a linear reservoir with
time constant k, each pulse determines a sudden increase of the
stream flow followed by an exponential-like recession.
In mathematical terms, a pulse with an excess depth hi½L� re-

leased at time ti from the root zone provides a contribution to the
overall specific (per unit catchment area) streamflow, Q, which is
equal to hi   k  exp  ½−kðt− tiÞ�. Hence, the instantaneous stream-
flow increment determined by the above water flow impulse at
the time when the pulse is produced from the root zone (i.e., for
t= ti) is khi (i.e., k × pulse depth). Provided that the system is
linear, the overall streamflow is just the sum of the contribution
of the different effective pulses taking place, and the presence of
overlapping pulses does not change the recession time constant.
Hence, the stochastic dynamical equation for QðtÞ at a daily time
scale is (2):

dQðtÞ
dt

= − k QðtÞ+ ξt; [S1]

where the first term on the right-hand side expresses the exponen-
tial decay of the flow between the events and the second term
ðξt½L=T2�Þ formally embeds the series of stochastic jumps induced
onQ by the sequence of flow pulses. Given the assumptions made
on the pulse occurrences, the flow-producing events have instan-
taneous durations (i.e., ξt is different from zero only during a set
of finite times) and produce a sequence of positive jumps in the
dynamics of Q. The “Poissonianity” of the events also implies that
the interarrival times between these jumps are exponentially dis-
tributed with mean 1=λ. Given the exponential distribution of the
rainfall depths, the extents of the jumps experienced by Q are
random and exponentially distributed with mean kα (k × pulse
depth). Under these assumptions, the master equation associated
with the probability density function (pdf) of the flow Q at time t,
pðQ; tÞ, reads (2, 3):

∂pðQ; tÞ
∂t

=
∂½k Q  pðQ; tÞ�

∂Q
− λpðQ; tÞ

+
λ

αk
 

ZQ

0

pðQ− z; tÞ exp ½−z=ðαkÞ�  dz:
[S2]

The steady-state pdf of the specific river discharge is thus given by
the solution of themaster equation for t→∞, which leads to Eq. 2.
The steady-state mean and variance of the process are λ  α and
λ  k  α2 (respectively), implying that the coefficient of variation of
daily flows (CVQ) is

ffiffiffiffiffiffiffi
k=λ

p
. Despite the fact that some of the re-

lated hydrological processes are somewhat simplified (e.g., rainfall
dynamics, hydrological response of the catchment) and other pro-
cesses are completely disregarded (e.g., geomorphological and
hydrodynamic dispersion in the river network), the above ap-
proach provides a robust linkage between the river flow regime
and a few (directly measurable) rainfall and landscape attributes
of the contributing catchment. The model was able to predict the
observed frequency distribution of river discharges in many tem-
perate catchments of the Alps and the United States successfully
under a range of climate and morphological conditions (4, 5).

Catchment Selection. In this study, 44 different catchments with
synchronousdischargeand rainfall recordswere selected to analyze
their flow regime and investigate the flow regime variability on
different temporal scales. The study catchments are scattered
throughout the United States and the Alps so as to cover a wide
range of hydrological and climatic conditions. Thirty-two catch-
ments are located in the United States, whereas the remaining
watersheds are located in the Italian Alps. Hydrological and cli-
matic records have been collected by the Regional Agency for
Environmental Protection of the Veneto Region and by the US
Geological Survey (http://waterdata.usgs.gov) and the National
Climatic Data Center (http://cdo.ncdc.noaa.gov/). The size of the
catchments spanned one order ofmagnitude (from 10 to 103   km2),
a range within which the characterization of the flow regime
through spatially averaged parameters proved meaningful (4, 5).
The seasons of the year were identified on the basis of calendar
dates (spring: 03/01–05/31, summer: 06/01–08/31, fall: 09/01–11/
30, and winter: 12/01–02/28). In the selection, highly engineered
rivers characterized by anthropogenic regulation were excluded
from the analysis, as well as snow-impacted regimes observed in
cases of intense snow melting or accumulation. In particular, all
the combinations of catchments/seasons for which the snow input
was greater than 70% of the overall input (rain and snow) were
assumed to be affected by snow accumulation processes and dis-
carded. Similarly, cases in which the mean rainfall was found to be
equal to (or smaller than) the mean streamflowwere considered to
be affected by melting processes and discarded. The overall
number of catchments/seasons combinations considered in this
study was 110. Additional information on the selected catchments
and the datasets used is provided in Table S1.

Parameter Identification. The analytical model identifies three
major parameters as the primary controls on the flow regime: (i)
the recession time constant, k; (ii) the mean depth of rainfall
events, α; and (iii) the frequency of streamflow-producing events,
λ. These three parameters could be estimated from hydrological
and climatic data, as detailed below.
The mean depth of rainfall events, α, can be computed from

rainfall records as the observed mean daily depth during wet
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days. The average frequency of streamflow-producing events, λ,
can be estimated exploiting the crossing properties of soil mois-
ture from the frequency of daily rainfall, λp, and other climate/
soil/vegetation parameters (1, 6) as:

λ= η
  exp

�
−β−1

�
β
−
λp
η

γ
�
λp=η; β

−1� ; [S3]

where γða; bÞ is the lower incomplete Gamma-function of param-
eters a and b, whereas η and β are the mean transpiration rate
and the mean rainfall depth (both normalized to the depth of
water available to plants in the root zone), respectively. The
parameter k, which represents the inverse of the time scale of
the hydrograph, could be obtained through morphological and
pedological features (e.g., by dividing the mean length of un-
channeled paths by a scale velocity representing the mean hy-
draulic conductivity of subsurface environments).
However, to make the estimation of λ and k easier, and to allow

for their calculation in case of missing landscape information, λ
and k have been estimated in this paper by combining rainfall and
streamflow data. In particular, λ is estimated by equalling the
observed mean specific discharge, hQi, and the analytical mean of
Q according to the stochastic model (i.e., λ= hQi=α). The consis-
tency of the estimate of λ has been verified through the compari-
son of theoretical and observed pdfs and by comparing the
estimated value of λwith the rainfall frequency λp (which is derived
by comparing the probability distribution of the number of wet
days in a reference time period and the corresponding Poisson pdf
assumed by the rainfall model; Fig. S1A). Note that in Alpine
catchments, to account for the marked heterogeneity of rainfall
fields, rainfall analyses were performed using spatially averaged
daily precipitation rates obtained by averaging the records avail-
able in all the precipitation stations located within or nearby the
considered catchments. In the remaining study catchments, in-
stead, due to the enhanced uniformity of rainfall and to exploit as
much as possible the long-term flow records available, we con-
sidered only the station with the longest rainfall record among the
available meteorological stations. The robustness of the estimate
performed has then been verified a posteriori by comparing the
estimates made using a single station and those obtained with
multiple stations during selected periods in which synchronous
precipitationmeasurements in different stations are available. The
recession rate, k, is derived instead from observed streamflows
through a regression analysis [i.e., a linear regression between the
estimated temporal derivatives of Q ðdQ=dtÞ and the corre-
sponding observed discharges (7)]. To exclude the effect of fast
flows, which have a limited impact on the flow distribution (es-
pecially on daily time scales) but may significantly constrain the
regression, only the discharges falling within the 0.9 quantile of the
distribution are considered.
An example of the estimation procedure based on rainfall and

discharge data for the Drowning Creek catchment is illustrated in
Fig. S1. In particular, Fig. S1A compares the probability distri-
bution of the number of wet days observed in a reference time
period in a gauging station chosen among those used in the study
and the corresponding Poisson pdf assumed by the rainfall model.
The procedure is used to estimate the rainfall frequency, λP, which
is used as a term of comparison for the estimated values of λ.
Similarly, Fig. S1B shows the comparison between the observed
distribution of the daily depths and the exponential distribution
assumed by the analytical model. A relevant example of regression
analysis is presented in Fig. S1C. Despite the observed scattering,
which has an impact on only the higher order moments of the
flow pdf (8), the procedure allowed an objective description of
the heterogeneity in the hydrological response of the study catch-
ments (Fig. 1).

To assess the robustness of the estimation procedure based on
rainfall and streamflow data for a selected catchment chosen
among the available sites (the Boite River at Cancia), we have
performed an independent estimate of the parameters λ and k
based only on climate and landscape data. In particular, λ has been
estimated by means of Eq. S3 using only climatic, soil, and soil-use
data, which are necessary to calculate the parameters η and β (4).
The soil parameters have been determined based on the literature
(5), whereas the potential evapotranspiration rate, on which η
depends, has been obtained by multiplying a crop coefficient, Kc
(estimated on the basis of the soil cover), and the reference po-
tential evapotranspiration estimated based on temperature data
using the Blaney–Criddle equation. Furthermore, the interannual
average of k has been estimated as the ratio between the mean
length of unchanneled paths (calculated from a digital terrain
map) and themean hydraulic conductivity (estimated based on the
soil type distribution in the catchment). Then, the interannual
variability of k has been linked to the interannual variability of the
mean rainfall intensity, assuming that k is proportional to the
corresponding mean rainfall depth during each period. Fig. S2
shows a comparison between the estimated values of the hydro-
climatic parameters λ, k, and α obtained using climate and land-
scape attributes and those obtained from both rainfall and
streamflow data. The two methods provide significantly similar
results, also in terms of sensitivity, exposure, regime instability,
and λ=k ratio, reinforcing the robustness of the estimation method
used in the paper.

Model Performances. The streamflow pdf predicted by the ana-
lytical model has then been compared with the observed frequency
distribution of daily flows for all the selected combinations of
catchments/seasons. The comparison has been undertaken for the
whole period of record and for consecutive nonoverlapping
periods of 2 and 8 y contained within each dataset. The parameters
of the flow pdf have been estimated coherently from the available
observations for each time span. Relevant examples of the fitting
between the stochastic analytical model and the observed river
flow pdfs are reported in Fig. S3. A summary of the model per-
formances is shown in Fig. S3A through the pdf of the (per-
centage) integral error between the analytical and observed flow
pdfs, calculated as the cumulative error in the probability, which
is attributed by the analytical model to the N intervals of ampli-
tude, ΔQ, used to characterize the frequency distribution of the
observed flows:

«=
1
2

XN
i

����nim−
Γ
�
λ=k;Qi=ðαkÞ

�
−Γ

�
λ=k; ðQi +ΔQÞ=ðαkÞ�

Γ½λ=k�
����; [S4]

where Q1 = 0, Qi = Qi−1 +ΔQ  ði> 1Þ, and ni represent the num-
ber of observed streamflows falling in the interval ½Qi;Qi +ΔQ�
(among the m data available during the considered period). On
the 8-y time scale, 90% of the cases analyzed are characterized by
a percentage areal error, «, less than 30%. The performance of the
model obviously decreases when shorter time spans are considered
(60% of the cases with an error smaller than 30% for the 2-y
regimes), possibly due to the limited ergodicity of the time series at
those time scales. Overall, the performances of the model are
judged satisfactory, especially in view of the simplicity of themodel
and the limited number of parameters (which were not calibrated
but only calculated from available hydrological data). In selected
case studies, in which both daily and subdaily flow data were avail-
able, we have also checked the robustness of the results obtained
in the paper in comparison to the underlying temporal scale of the
data used by comparing the pdf of the daily streamflow and the pdf
of the streamflows evaluated at subdaily time scales. In none of the
cases analyzed has the temporal resolution been found to have
a significant impact on the result. As an example, Fig. S4 shows
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the comparison between the daily and 15-min streamflow pdfs in
the Flat Creek (NC), which is one of the smallest catchments
considered in the study (and where the effect of subdaily stream-
flow dynamics is thus enhanced). Regardless of the season consid-
ered, and regardless of the type of regime, the observed impact of
the temporal resolution of data on the flow pdf is negligible, re-
inforcing the robustness of the approach used in the study.

Flow Regimes and Mean Specific Discharge. Although the type of
flow regime has been found to be almost independent of the un-
derlying precipitation pattern, the nature of the regime is quite
strongly correlatedwith themean specific (perunit catchment area)
discharge, hQi. In particular, Fig. S5 shows that the mean specific
discharge sensibly decreases with the CVQ, clearly suggesting that
erratic regimes are infrequent in rivers with specific discharges
larger than 0:1 cm=d. On the other hand, a large majority of the
cases where hQi< 0:1 cm=d are found to be erratic (but not vice
versa), thereby suggesting that low hQi may represent a sufficient
but not necessary condition for the erraticity of the regime.

Exposure Index.According to the analytical model, the streamflow
pdf is aGamma-distribution with shape parameter s= λ=k and rate
parameter r= αk. Hence, in this framework, the variability of the
flow regime across different periods is related to the variability of
the shape and rate parameters of the Gamma-pdf, which is, in
turn, induced by the interannual fluctuations of λ, α, and k. Such
fluctuations were found to be weakly correlated (ρλ;k = 0:21,
ρλ;α = 0:04, and ρα;k = 0:31) and quite significant at all the time
scales, especially for the frequency of the events (with an average
coefficient of variation of λ close to 0.96). On this basis, the ex-
posure to climate change of the flow regime was estimated for
each catchment and season through the exposure index (E), de-
fined as the sum of the modulus of the relative variations of the
shape and rate parameters of the Gamma-pdf in Eq. 2:

E=
����Δss

����+
����Δrr

����: [S5]

Eq. S5 incorporates the overall variability induced by hydroclimatic
fluctuations in the ratio λ=k and in the product αk, properly dis-
counting the self-compensating changes in the number, persistency,
and intensity that maintain unaltered the flow pdf (e.g., simulta-
neous increases of λ and kmaintaining unaltered the ratio λ=k, and
thus the type of regime). Note that the right-hand side of Eq. S5 is
the sum of two moduli; hence, possible tradeoffs related to con-
trasting changes of the shape and rate parameters (e.g., r increasing
and s decreasing) are not considered. The E has been computed
for each catchment/season by calculating the relative variations of
r and s across all the nonoverlapping groups of 2 and 8 y contained
in the datasets. Note that for the analysis of the 8-y regimes, only
catchments with at least 50 y of data were considered.

Regime Instability Index.The regime instability is quantified through
the regime instability index (RI), which is defined by the integral
of the modulus of the difference between the river flow pdfs
pertaining to two distinct periods [p1ðQÞ and p2ðQÞ]:

RI = 0:5 
Z∞

0

jp2ðQÞ− p1ðQÞjdQ: [S6]

The RI is thus bounded between 0 and 1, whereRI = 0 implies that
the flow regimes in the considered periods are perfectly overlap-
ping (long-term stability of the flow regime) and RI = 1 implies
disjoint river flow pdfs (a radical change of the flow regime, where
all the flows recorded during the first period are not observed in
the second period, and vice versa). The RI properly summarizes
the volatility of the flow regime across different years, including

high/low-flow frequencies, modal flows, and intraseasonal flow
variability. Fluctuations in the temporal correlation of the flows
are instead disregarded. The numerical computation of the RI
from observed discharges poses serious challenges due to the
strong dependence of the result on the integration interval, ΔQ.
When ΔQ is large, the RI is artificially small because of the en-
hanced smoothing of the resulting estimates of p1 and p2 (Fig. S6).
On the contrary, when the sampling interval ΔQ is too small, the
RI tends to be artificially large because of the huge fluctuations of
the pdfs. To overcome this difficulty, we have computed the in-
tegral of Eq. S5 using a number of flow intervals,N, ranging from 1
to 500. The behavior of the RI as a function of N has then been
analyzed. For the reasons discussed above, the RI was generally
found to be a growing function of N; however, in most cases, it
presents a stable plateau (i.e., similar values ofRI within a range of
N). The regime instability index RI is calculated as the average of
the functionRI(N) calculated within the observed plateau, thereby
assuming that the independence of RI on N indicates that the
corresponding ΔQ values used for the numerical integration are
large enough to limit the effect of fluctuations in the sampling of
the flow pdfs but small enough to capture the behavior of the flow
regimes in the two periods (Fig. S6). The cases where the function
RIðNÞ, after the application of a suitable moving average aimed at
removing the high-frequency fluctuations, does not display a range
of 50 consecutive values ofN with nearly constant values of the RI
(at most ± 5% of the initial value) were disregarded. The pro-
cedure has been repeated for all the combinations of catch-
ments/seasons and for all the periods of 2 and 8 y available in
each dataset. Different ways of computing the integral in Eq. S6
(e.g., by using a fixed number of classes or classes with an ampli-
tude proportional to the mean discharge) provide results that are
qualitatively analogous to those shown in Fig. 3.

Sensitivity to Climate Change. The sensitivity, S, of the flow regime
to climate changes is computed as the ratio between the regime
instability and the exposure. High sensitivities imply that the un-
derlying hydroclimatic fluctuations produce amplified effects in
theflow regime, with relevant changes in the frequencies associated
with discharges of any size. It should be emphasized, however, that
the regime instability cannot be entirely related to interannual
fluctuations of the number, persistency, and mean intensity of the
flow pulses. In fact, regime instability may also arise due to, for
example, changes in the temporal distribution of the events, lack of
ergodicity within the considered periods, and interannual vari-
ability of processes that are not explicitly included in the analytical
model. As a result, in a few cases, the calculated value of the RI was
found to be much larger than the corresponding exposure (mainly
because of the constancy of λ, α, and k). This leads to overestimated
values of the sensitivity, which, however, mirror only the circum-
stantial stability of λ, α, and k and emphasize the role of second-
order processes (e.g., episodic snowfalls, untracked changes in the
stage-discharge relation) whose effect on the flow regime is typi-
cally beclouded. To focus on the role played by the interannual
fluctuations of the number, persistency, and mean intensity of the
flow pulses, we have thus disregarded all the cases in which the
estimated exposure was lower than 0.1, assuming that the related
estimates of the sensitivity could not be reliable below this
threshold. Were these points included, the main conclusions of the
paper would remain unaltered, with the major consequence being
an increased scattering of the points in Fig. 3C. The sensitivity of
the flow regime to climate changes can also be characterized an-
alytically using the stochastic analytical model embedded in Eq. 2.
The change of probability density associated with any discharge of
size Q (between the periods 1 and 2) can be approximated using
a first-order Taylor series expansion as:

ΔpðQÞ ’ ∂p
∂s

Δs+
∂p
∂r

Δr; [S7]
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where Δr and Δs are the variations of shape and rate parameters
of the flow pdf in the considered periods. Hence, the RI can be
expressed using Eqs. S6 and S7 as:

RI = 0:5
Z∞

0

jΔpðQÞjdQ ’

’ 0:5
Z∞

0

����Δs
�
∂pðQÞ
∂s

	
+Δr

�
∂pðQÞ
∂r

	����dQ:

[S8]

If we further assume that the functions ∂p
∂s and

∂p
∂r have the same

sign for all the values of Q (which proves nearly true in most
cases), and if we focus only on the cases where the changes of
s and r are in concordance (so that Δs and Δr have the same
sign), Eq. S8 can be rewritten as follows:

RI ’
����Δss

����
Z∞

0

s
2

����∂pðQÞ
∂s

����dQ+

+  

����Δrr
����
Z∞

0

r
2

����∂pðQÞ
∂r

����dQ

=  

����Δss
���� fsðsÞ+

����Δrr
���� frðsÞ;

[S9]

where fsðsÞ and frðsÞ are suitable dimensionless functions of the
ratio λ=k, whose analytical expressions are given by:

frðsÞ=   expð−sÞ ss
ΓðsÞ ; [S10]

fsðsÞ= s
2  ΓðsÞ G

3;0
2;3

�
ψ0ðsÞ

���� 1; 1
0; 0; s

	
; [S11]

where ψ0ðsÞ is the Digamma-function and G is the Meijer
G-function. From Eq. S9, the following expression of the sensi-
tivity is finally obtained:

S=
RI
E

= Es fsðsÞ+ ½1−Es� frðsÞ; [S12]

where Es = jΔsj=ðsEÞ represents the contribution of the variabil-
ity of λ=k to the overall exposure. Eq. S12 shows that the sensi-

tivity is a weighted average of fs and fr, which are both monotonic
increasing functions of s.

Hypothesis Testing. The diverse degree of exposure and sensitivity
of the two regime types has been quantitatively assessed using
some hypothesis testing based on the distribution of the values of
E and S of the cases classified as persistent and erratic (in-
termediate regimes have been excluded from the analysis). We
first tested the hypothesis of normality of the two samples using
a Lilliefors test, which was indeed accepted at the 5% signifi-
cance level for both of the variables hEi and hSi at both of the
considered time scales (2 and 8 y). Then, a standard t test was
used to assess the different mean sensitivity and exposure of the
two groups. The test was performed formulating the null hy-
pothesis that E and S in erratic and persistent regimes have the
same mean with unknown variances. For all the cases analyzed,
the null hypothesis was rejected at P< 0:05, thereby implying
that the exposure hEi and the sensitivity hSi of erratic and per-
sistent rivers are statistically different (Fig. 3).

SI Discussion
Eqs. S10–S12 show that sensitivity is mainly a function of the ratio
s= λ=k, implying that the sensitivity is directly related to the in-
traseasonal flow variability, CVQ = s−1=2, as also suggested by ob-
servational data. Fig. 3C (Inset) shows a comparison between the
observed sensitivity between all the pairs of 2-y periods charac-
terized by concordant changes of s and r, and the theoretical lines
given by Eqs. S10 and S11, where s is expressed as a function of
CVQ via s=CV−2

Q . Despite the scattering of the data, the agree-
ment with the theoretical pattern is remarkable. The observed
reduced sensitivity to climate change of erratic flow regimes is thus
also explained theoretically by the nature of the frequency distri-
bution of river flows. The reduced sensitivity of erratic regimes can
also be explained on physical grounds as follows. The reduced flow
variability associated with persistent regimes is guaranteed by the
occurrence of a sufficient number of events bringing a suitably
continuous water supply to the river. As such, persistent regimes
are more sensitive to changes in precipitation features ðλ; αÞ with
respect to erratic regimes, where the presence of stream water is
primarily related to the ability of catchments to modulate the re-
lease of water stored in the subsurface. Hence, erratic regimes are
more sensitive to changes in the features of the hydrological re-
sponse, k. Any variation of k, however, entails a simultaneous and
concordant change in the shape and rate parameters of the flow
pdf, leading to a tradeoff that decreases the variability of the flow
pdf and reduces the RI.
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Fig. S1. Parameter identification. (A) Comparison between the pdf of the number of rainy days p(W) in a reference time span, T = 10 d, observed at the
gauging station of Jackson Springs during the spring from 1985 to 1992 (histogram) and the corresponding Poisson distribution assumed by the analytical
model (red dots). The vertical dashed line indicates the mean number of wet days within the reference time period, λpT. (B) Comparison between the dis-
tribution of the daily rainfall depths p(h) observed at the gauging station of Jackson Springs during the spring from 1985 to 1992 (histogram) and the ex-
ponential distribution assumed by the analytical model (red solid line). The mean rainfall depth, α, is also indicated (vertical dashed line). (C) Regression analysis
of the streamflows observed in Drowning Creek during the spring season of the years 2001–2008. The flow decay rate, k, is derived from observed streamflows
by a linear regression of the estimated temporal derivatives of Q (dQ/dt) plotted vs. the corresponding observed discharges Q (6).
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and landscape information (solid lines) compared with the corresponding estimate made using rainfall and streamflow data (dashed lines) for the Boite
catchment at Cancia. (B) Comparison between the estimates of λ/k, E, the RI, and sensitivity (S), which result from the use of rainfall and streamflow data (red
histograms), and the corresponding values estimated based on climatic and landscape data (blue histograms).
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Fig. S3. Model performances. (A) Frequency distribution of the error estimated for all the combinations of catchments/seasons and for all the available
nonoverlapping periods of 2 and 8 y contained within each dataset. (B–G) Comparison between the observed streamflow distributions (histograms) and the
corresponding estimates of p(Q) provided by the analytical model (red lines) for selected combinations of catchments/seasons and different time scales (2-y and
8-y regimes). (B) Fall streamflow regime of the Big Eau Pleine River at Stratford from 1989 to 1996. (C) Summer streamflow regime of the Boite River at Cancia
from 1986 to 1993. (D) Summer streamflow regime of the Bear Butte Creek at Deadwood from 1989 to 1996. (E) Summer streamflow regime of the Piave River
at Ponte della Lasta from 1998 to 2005. (F) Fall streamflow regime of the Youghiogheny River at Oakland from 1961 to 1962. (G) Spring streamflow regime of
the Deer Creek at Fountain Springs from 1979 to 1980.
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Fig. S4. Daily and 15-min streamflow distributions in the Flat Creek (NC) during the fall (A and B) and the spring (C and D), evaluated during two different
time periods (2008–2009 and 2010–2011).
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Fig. S5. Anticorrelation between mean specific discharge and intraseasonal flow variability. Mean specific (per unit area) discharge, plotted as a function of
the CVQ for each available combination of catchments/seasons. The dashed line indicates the least-squared regression (slope = 0.9, r2 = 0.3). The plot suggests
that erratic regimes are infrequent in rivers with high specific discharges.
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Fig. S6. Computation of the regime instability. Springtime RI observed between the periods 1979–1986 and 1987–1994 in the Rivanna River as a function of
the number of flow intervals, N, used to compute the streamflow probability distributions (Eq. S6). (Left Inset) When N is small, the RI is artificially small
because of the enhanced smoothing of the estimated pdf. (Right Inset) On the contrary, when too many intervals are used, the RI is artificially large because of
the increased number of intersections between the two pdf estimates produced by their enhanced fluctuations. (Middle Inset) Presence of a plateau in the
function RI(N) allows one to single out the proper value for the regime instability between the considered periods.
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Table S1. Summary information about the 44 catchments selected in this study

Catchment State (country) Area, km2 Period
Streamflow gauging

station (state)
Rainfall gauging
stations (state) Seasons

Valley Creek Alabama (United States) 383 1978–2012 Oak Grove (AL) Bankhead Lock
and Dam (AL)

Spring, summer,
autumn, winter

Banning Creek Arizona (United States) 23 2005–2011 Bisbee (AZ) Bisbee (AZ) Summer
Boulder Creek Arizona (United States) 98 1984–1993 Rock Springs (AZ) Crown King (AZ) Spring
South Fork

Parker Creek
Arizona (United States) 3 1986–2012 Roosevelt (AZ) Workman Creek (AZ) Spring

White River Arkansas (United States) 1,036 1963–2003 Fayetteville (AR) Fayetteville (AR) Spring, summer,
autumn, winter

Deer Creek California (United States) 216 1969–2012 Fountain Springs (CA) Glennville (CA) Spring, summer,
autumn, winter

Vallecito Creek Colorado (United States) 188 1963–1997 Bayfield (CO) Pagosa Springs (CO) Autumn
Prairie Creek Florida (United States) 603 1977–2012 Fort Ogden (FL) Arcadia (FL) Spring, summer,

autumn, winter
Mississinewa River Indiana (United States) 1,766 1931–2012 Marion (IN) Marion (IN) Spring, summer,

autumn
Little Sandy River Kentucky (United States) 1,036 1969–2001 Grayson (KY) Grayson (KY) Spring, summer,

autumn, winter
Little Androscoggin

River
Maine (United States) 190 1978–2003 South Paris (ME) West Paris (ME) Spring, summer,

autumn, winter
Youghiogheny River Maryland (United States) 347 1941–2012 Oakland (MD) Oakland (MD) Spring, summer,

autumn, winter
West Swan River Minnesota (United States) 42 1963–1979 Silica (MN) Hibbing (MN) Spring, summer,

autumn
Castor River Missouri (United States) 1,096 1936–1991 Zalma (MO) Zalma (MO) Spring, summer,

autumn, winter
Salt Creek Nebraska (United States) 433 1953–2002 Roca (NE) Roca (NE) Spring, summer,

autumn
Gallinas Creek New Mexico (United States) 218 1990–1999 Montezuma (NM) Wesner Springs (NM) Summer, autumn
Rio Nutria New Mexico (United States) 185 1972–1995 Ramah (NM) McGaffey (NM) Spring
Drowning Creek North Carolina

(United States)
474 1952–2012 Hoffmann (NC) Jackson Springs (NC) Spring, summer,

autumn, winter
Flat Creek North Carolina

(United States)
20 1989–2012 Inverness (NC) Inverness (NC) Spring, summer,

autumn, winter
Indian Creek North Carolina

(United States)
179 1953–2012 Laboratory (NC) Lincolnton (NC) Spring, summer,

autumn, winter
Jacob Fork North Carolina

(United States)
67 1961–2012 Ramsey (NC) Casar (NC) Spring, summer,

autumn, winter
Lookingglass Creek Oregon (United States) 409 1955–1998 Brockway (OR) Reston (OR) Spring, summer,

autumn, winter
Bear Butte Creek South Dakota

(United States)
43 1988–2011 Deadwood (SD) Deadwood (SD) Spring, summer

Spring Creek South Dakota
(United States)

159 1983–1993 Flandreau (SD) Flandreau (SD) Spring, summer,
autumn

Cowhouse Creek Texas (United States) 1,178 1992–2007 Pidcoke (TX) Pidcoke (TX) Spring, summer,
autumn, winter

Redgate Creek Texas (United States) 45 1962–2012 Columbus (TX) Columbus (TX) Spring, summer,
autumn, winter

Santa Clara River Utah (United States) 48 2005–2012 Pine Valley (UT) Gardner Peak (UT) Summer
Rivanna River Virginia (United States) 1,717 1947–2012 Palmyra (VA) Charlottesville (VA) Spring, summer,

autumn, winter
Rock Creek Washington (United States) 64 1944–1971 Cedarville (WA) Elma (WA) Spring, summer,

autumn, winter
Sand Run West Virginia

(United States)
37 1946–2012 Buckhannon (WV) Buckhannon (WV) Spring, summer,

autumn, winter
Big Eau Pleine River Wisconsin (United States) 580 1949–2012 Stratford (WI) Stratford (WI) Spring, summer,

autumn
Shell Creek Wyoming (United States) 376 1980–2011 Shell (WY) Shell Creek (WY) Summer
Brenta Italy 214 1995–2010 Borgo Valsugana Vetriolo, Canezza,

Levico, Telve di Sopra,
Rifugio Crucolo

Summer

Brenta Italy 766 1995–2010 Ponte Filippini Vetriolo, Canezza, Levico,
Telve di Sopra, Rifugio
Crucolo, Longana

Summer

Boite Italy 82 1992–2008 Podestagno Podestagno Summer
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Table S1. Cont.

Catchment State (country) Area, km2 Period
Streamflow gauging

station (state)
Rainfall gauging
stations (state) Seasons

Boite Italy 313 1986–2008 Cancia Podestagno, Faloria,
Borca, Cortina

Summer

Cordevole Italy 8 1985–2008 La Vizza Passo Pordoi Summer
Cordevole Italy 109 1990–2008 Saviner Passo Pordoi, Arabba,

Passo Falzarego
Summer

Fersina Italy 78 1996–2010 Canezza Canezza Summer
Fersina Italy 175 1996–2006 Trento Trento Roncafort,

Canezza
Summer

Fiorentina Italy 58 1993–2008 Sottorovei Passo Falzarego,
Caprile, Pescul

Summer

Padola Italy 130 1987–2007 Santo Stefano di Cadore Passo Monte Croce Comelico,
Casamazzagno

Summer

Piave Italy 355 1990–2006 Ponte della Lasta Passo Monte Croce Comelico,
Malga Campobon,
Santo Stefano di Cadore,
Casamazzagno,
Costalta, Cimacanale,
Sappada

Summer

Sonna Italy 120 1986–2007 Feltre Monte Avena, Feltre Summer
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