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SI Methods
Age Models. To account for the two discrete sediment types (gyttja
and silt) in our records, we developed a method based on original
work by ref. 1.We usedmagnetic susceptibility (MS) as a proxy for
minerogenic silt content, and for each record, we estimatedMScrit,
the threshold MS representing 100% silt content. Given MScrit
and a particular sample at depth d below the sediment-water in-
terface, we calculated the proportion of silt in the sample, θd, as

θd =min
�
1;

MSd −minðMSÞ
MScrit −minðMSÞ

�

Then, letting xd represent the thickness of sample d as sliced, the
effective depth at depth d,

EDd =
Xd
i= 0

ð1− θdÞ·xd

represents the accumulated depth of sediment with the instan-
taneous minerogenic component mathematically omitted. For
each record, we solved numerically for the optimal MScrit, which
was defined as the value that minimized the sum of squared re-
siduals of a linear regression of 14C ages on their effective depths.
Lastly, to obtain the final age of each individual sample, we fit
a smooth spline through a plot of 14C ages against effective depths
defined by the optimal MScrit. Whereas the approach of ref. 1
made the assumption that the underlying sedimentation rate of
nonminerogenic sediment changed only as a linear function of
time, this last step allows smooth nonlinear variations, which are
common in other age-depth modeling methods (2), while re-
taining the representation of two sediment types.

Charcoal Peak Identification. We identified peaks representing
local fire events in records of charcoal accumulation rate (CHAR)

following methods in ref. 2. We first interpolated all CHAR
records to constant resolution. For the main analysis (i.e. to
produce the centennial and millennial fire frequency curves),
we used a 10-y resolution, approximating the median sample
resolution of all records. We used 5-y interpolation when iden-
tifying recent fire events for validation with observational data;
this change reflects the higher true resolution of the near-surface
sediments and yielded better agreement with observations.
After interpolating, for each record we estimated a background
charcoal trend with a locally weighted regression robust to
outliers (1,000-y span) (3). This background was subtracted
from the raw data to obtain a series of CHAR residuals. From
these residuals, we derived a temporally local threshold value at
each sample age within a 1,000-y moving window centered on
the sample. Within the window, we fit residual CHAR values to
a two-distribution Gaussian mixture model. Because the data
were residuals, one distribution always had a mean near zero
and contained most of the samples. We assumed that this dis-
tribution represents random noise, and we used its 99th per-
centile to define the local threshold for peak detection. After
all local threshold values were computed for the record, any
CHAR residuals exceeding the threshold were identified as fire
events. Exploratory analysis showed that only our uppermost
samples were sensitive to minimum count screening (4) because
of low charcoal abundance in these low-density sediments. Mean
FF of recent decades agreed best with observational data (see
main text, Results and Discussion) when no screening was per-
formed, and therefore we deemed the procedure overly conser-
vative and omitted it. Finally, we checked the robustness of peak
detection in our records using a signal-to-noise index (5). In-
stances of unacceptable signal-to-noise index < 3.0 were ex-
tremely rare (collectively, <0.5% of all records), thus warranting
high confidence in our ability to statistically separate CHAR
peaks from noise.
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Fig. S1. Increase in late burning in the Yukon Flats (YF) study area since 1950 CE, which is illustrated by a significant trend of increasing out date over time.
Out date is defined as the date that the fire was declared out as reported to the Bureau of Land Management statistics (1). Fires observed within 10 km of any
study site are shown (n = 15).
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