Supporting Information

Richter et al. 10.1073/pnas.1304250110

SI Materials and Methods

Immunoblots and ChIP. Immunoblots were performed as previously described using the SuperSignal Femto West Substrate (Thermo Fisher Scientific) and an LAS-4000 Mini Image Analyzer (FUJIFILM) (1). ChIP and the subsequent quantitative RT-PCR (RT-qPCR) were performed as previously described (2, 3). ChIP was performed with antibodies against K9-acetylated HISTONE3 (H3K9Ac; ab10812; Abcam) with the GFP Vector Fusion Aid Kit (Axorra) for ARF2:GFP and anti-c-Mvc agarose (Sigma) for ARF7:MYC. Fold enrichment of each genomic DNA fragment after ChIP and qPCR was calculated by normalizing the amount of target DNA fragment against a genomic fragment of ACTIN8 as an internal control. Then, the value of the AUXIN RESPONSE FACTOR (ARF) transgenic line input was normalized against the value obtained with the respective loss-of-function mutant as a negative control using the following equation: 2^{(Ct}_{transgene input} - Ct_{transgene ChIP})/ $2^{(Ct_{mutant} - Ct_{mutant} ChIP)}$. DNA enrichments of each fragment were determined by RT-qPCR in three independent biological replicates.

Microarray Analysis. Microarray analysis was performed using total $^{2} s^{-1}$ RNA extracted from 10-d-old seedlings grown in 150 µmol m⁻ white light in long-day conditions (16/8 h at 21 °C/18 °C) using the NucleoSpin RNA Plant Kit (Machery-Nagel). Plant material was collected in the middle of the 16-h light period; 500 ng total RNA were prepared and labeled with Cy3 using the Quick Amp Labeling Protocol (Agilent Technologies). Three biological replicate samples were prepared for each genotype, and Arabidopsis arrays (V4, design ID 21169; Agilent Technologies) were hybridized at 65 °C for 17 h in rotating hybridization chambers (Agilent Technologies). Subsequently, the arrays were washed and scanned using an Agilent Microarray Scanner (Agilent Technologies). Total RNA and probe quality were controlled with a Bioanalyzer 2100 (Agilent Technologies). Raw data were extracted using the Feature Extraction software v.10.7.3.1 (Agilent Technologies). Raw data files were imported into GeneSpring GX (v. 12) and normalized choosing the scale-to-median and baseline-to-median options. Data were then filtered using the fold change algorithm (twofold change) and subsequently subjected to an ANOVA analysis (P < 0.05) (Dataset S1). Microarray data were deposited in the Gene Expression Omnibus (GSE35730).

 Fode B, Gatz C (2009) Chromatin immunoprecipitation experiments to investigate in vivo binding of Arabidopsis transcription factors to target sequences. *Methods Mol Biol* 479:261–272.

Richter R, Behringer C, Müller IK, Schwechheimer C (2010) The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. *Genes Dev* 24(18):2093–2104.

Oh E, et al. (2009) Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. *Plant Cell* 21(2):403–419.

Fig. S1. Genetic interaction between *ARF2* and *GATA*, *NITRATE-INDUCIBLE*, *CARBON-METABOLISM INVOLVED* (*GNC*) and *GNC-LIKE* (*GNL*)—analysis of additional phenotypes. (*A* and *B*) Relative chlorophyll content of detached leaves before and after transfer to the dark as a quantitative read out for leaf senescence. LD, long day-grown plants; LD+D, long day-grown plants transferred to the dark. (C) Quantification of seed size. (*D*) Stamen length at floral stage 15. (*E*) Average position of floral organ abscission. (*F*) *PROTOCHLOROPHYLLIDE OXIDOREDUCTASE* A–C (*POR* A–C) gene expression as detected by RT-qPCR in 10-d-old seedlings. (G) Venn diagrams indicating the number of differentially expressed up- and down-regulated genes between WT and *arf2* (*arf2*/wild type) as well as *arf2* and *arf2* gnc gnl (*arf2* gnc gnl/arf2) as presented in Table S1. The average and SE of three replicate measurements are shown in A–F. Student *t* test: $a = P \le 0.05$; $b = P \le 0.01$; $c = P \le 0.001$; n.s., not significant.

Fig. 52. Genetic interaction between *ARF2*, *GNC*, and *GNL*. (*A*) Representative photographs of 5-wk-old (5w) WT and *arf2* mutant as well as *arf2* gnc, *arf2* gnl, and *arf2* gnc gnl mutant plants grown in long-day conditions. (Scale bar: 5 cm.) (*B*) Absolute chlorophyll content determined from 10-d-old light-grown seedlings of the genotypes shown in *A*. Student *t* test: $a = P \le 0.1$; $b = P \le 0.05$; $c = P \le 0.01$; n.s., not significant.

Fig. S3. Gene expression analysis of GNC and GNL after auxin treatment. GNC and GNL gene expression as detected by RT-qPCR in 10-d-old seedlings after treatment with 5 μ M 2,4D. The fold change relative to transcript levels at time point 0 h is shown.

Fig. S4. Genetic interaction between *SOLITARY ROOT* (*SLR*) and *GNC* and *GNL*—analysis of additional phenotypes. (*A*) Absolute chlorophyll content of 10-d-old light-grown seedlings. (*B*) Flowering time analysis. Number of leaves until bolting. (*C*) Quantification of seed size. The average and SE of three replicate measurements are shown. Student *t* test: $a = P \le 0.05$; $b = P \le 0.01$; $c = P \le 0.001$; n.s., not significant. CBB, Coomassie Brilliant Blue (loading control).

Fig. S5. The gibberellin (GA) response pathway is functional in *arf2* mutants. (*A*) Representative immunoblots with anti-REPRESSOR-OF-*ga1-3* (anti-RGA) of total protein extracts (45 μ g) prepared from 10-d-old light-grown WT and *arf2* seedlings that had been treated with GA3 (100 μ M). (*B*) RT-qPCR detection of *GlD1a–GlD1c* transcripts from 10-d-old light-grown WT and *arf2* mutant seedlings. Student *t* test: a = *P* < 0.05; b = *P* < 0.01.

Wild type PIF1-TAP PIF1-TAP arf2 arf2

Fig. S6. Independent regulation of *GNC* and *GNL* transcription by ARF2 and PHYTOCHROME INTERACTING FACTOR 1 (PIF1). RT-qPCR amplification of *GNC* and *GNL* transcripts from 10-d-old seedlings. Student t test: a = P < 0.05; b = P < 0.01; c = P < 0.001; n.s., not significant.

Fig. 57. Auxin has no effect on ARF7:MYC and ARF2:GFP protein abundance. (A) RT-qPCR analysis of the transcript analysis of three representative auxinregulated genes after 30 min 2,4D treatment (5 μ M) reveals the activation of the auxin response machinery by the auxin treatment. Control experiment for the experiment is shown in *B*. Fold change relative to mock-treated WT levels. (*B*) Anti-GFP and anti-MYC immunoblots to detect ARF2:GFP and ARF7:MYC from total protein extracts (30 μ g) prepared from 30 min mock- and 2,4D-treated seedlings. Student *t* test: c = *P* < 0.001. CBB, Coomassie Brilliant Blue (loading control); IAA, indole-3-acetic acid.

Fig. S8. Protein behavior of ARF7:MYC in response to GA. ARF7:MYC immunoblot analyses of 10-d-old light-grown seedlings treated with 10 µM GA3, 50 µM cycloheximide (CHX), and 100 µM MG132 (Z-Leu-Leu-al) as specified. CBB, Coomassie Brilliant Blue (loading control).

Name	Sequence	Position	Strand
GNC promoter			
la	TGT.CTN	-23 to -19	+
lb	TGT.CTC	–135 to –130	+
lla	TGT.CTC	-232 to -227	_
llb	TGT.CTN	-269 to -265	+
Illa	TGT.CTC	-694 to -689	+
lllb	TGT.CTC	–777 to –772	+
GNL promoter			
I	TGT.CTN	-492 to -488	_
lla	TGT.CTN	-637 to -633	_
llb	TGT.CTN	-710 to -706	+
III	TGT.CTC	–935 to –930	+
ARF2 promoter			
I	TGT.CTN	–137 to –133	_
lla	TGT.CTC	-387 to -382	_
llb	TGT.CTC	-401 to -396	_
Illa	TGT.CTN	-647 to -643	+
IIIb	TGT.CTN	–798 to –794	+

Table S1. Positions of auxin response elements in the GNC, GNL, and ARF2 promoters

Table S2. List of primers used in this study

PNAS PNAS

Primer name	Sequence (5' to 3')	
ARF2 gLP	AGTACTGGCCACCGCATGGCATGCCA	
ARF2 gRP	GCAGCATCATTCAAGTTGTTTCTCTG	
GNL gLP	TATCTGATGGTGGTTCATCATCAAG	
GNL gRP	ATGCTAGATCATCGAAATAGATATTG	
GNC gLP	ACACTTATCACGCTGATCATCTCC	
GNC gRP	TGTGGGAACACTTGTTGATAAGCTG	
GA1 gLP	ACATTGTTGCATAGTTTGGAGGGGATGC	
GA1 gRP	TGGAATATGTCCCATTCGAGCTGATGCTGAGC	
UBC21 2step-LP	TCCTCTTAACTGCGACTCAGG	
UBC21 2step-RP	GCGAGGCGTGTATACATTTG	
ACT8 2step-LP	TCAGCACTTTCCAGCAGATG	
ACT8 2step-RP	CTGTGGACAATGCCTGGAC	
GNC 2step-LP	GCGTGATTAGGGTTTGTTCG	
GNC 2step-RP	CTTTGCCGTATACCACATGC	
GNL 2step-LP	CCATATCTCCCAACCTCTCG	
GNL 2step-RP	TGGGCACCATTTGATCAC	
GID1a 2step-LP	GCTGCGAGCGATGAAGTTA	
GID1a 2step-RP	AACCCATGTATTGAGAGGAACC	
GID1b 2step-LP		
GID1b 2step-RP	CCATGTGTTGAGTGGGACAA	
GIDTC 2step-LP	CITITIGCGTTTGATTGGTAA	
GID1c 2step-RP	CCATGTATTGAGAGGAACCACTG	
POR A 2step-RP	GAIGCIGAAGCAIIIAAIIIICC	
POR B 2step-LP		
POR B 2step-RP	GENTEGATCACICACCI	
POR C 2step-LP		
ADED Deter LD		
AREZ ZSIEP-LP		
AREZ 2stop LB	GAAGATTTGCGAACCATGC	
ARE7 2step-LF	GCAATGCATCTCTGTCACA	
	GATTGEGGCTCTCACTCTC	
	TCATTGGTATGACATCCGGACTTG	
GNC AUXRE-I P I		
GNC AUXRE-RP I	ΤΓΑΤΓΑΓΑΤΑΔΑΓΑΔΑΤΓΑΔΑΓΑ	
GNC H3K9 ChIP I P-Ha	GTGATTCTTCATGAATACAGT	
GNC H3K9 ChIP RP-Ha	GATCCTTTTACTTGTTGTCT	
GNC H3K9 ChIP I P-Hb	CGTCTATGATCTCTCTCAATC	
GNC H3K9 ChIP RP-Hb	GACTTGATGATGATGATGATG	
GNL AuxRE-LP III	ATCATGATATGTGTGGGCTCTTG	
GNL AuxRE-RP III	GAGGTTCACGTGAGTACATCTG	
GNL AuxRE-LP II	AGATCTCAGCCGTTGTAGTTCG	
GNL AuxRE-RP II	GGGCAGAGACCAGTGTTATATA	
GNL AuxRE-LP I	CTTCATCAGTCTCTAAACATGGCC	
GNL AuxRE-RP I	CTGATTTGGTGAAAGATACATA	
GNL H3K9 ChIP LP-Ha	ACGAAATATTACAGATAGGA	
GNL H3K9 ChIP RP-Ha	ATTCGAACTACAACGGCTGAGA	
GNL H3K9 ChIP LP-Hb	CATAGTATAGCTTGGATCC	
GNL H3K9 ChIP RP-Hb	GCTTGGTGATGAAAATGTTGT	
ARF2 AuxRE ChIP-LP III	AGGATGACTTAAATTGCTATA	
ARF2 AuxRE ChIP-RP III	CTATTACCGGTTGTAACCATTTCC	
ARF2 AuxRE ChIP-LP II	TGAAGCTGAGTTTTGACTACCTCTG	
ARF2 AuxRE ChIP-RP II	CTAGTCTAGGCTTTATCGGAGTC	
ARF2 AuxRE ChIP-LP I	ATCGAGTAATGTCAAGGAGCTA	
ARF2 AuxRE ChIP-RP I	AGCAGACGATATCAACAAGAA	
Aux/IAA3 2step-LP	CAAAGATGGTGATTGGATGCT	
Aux/IAA3 2step-RP	TGATCCTTAGTCTCTTGCACGTA	
Aux/IAA19 2step-LP	CTATGATGATCTAGCCTTTGC	
Aux/IAA19 2step-RP	AGAAACATCCCCCAAGGTACA	
Aux/IAA29 2step-LP	_P CCGAGTCTTCAATAGTTTACGATG	
Aux/IAA29 2step-RP	CGAATATGACGATGATGATAACTACC	

Dataset S1. Differentially expressed genes in WT, arf2, and arf2 gnc gnl mutants as detected by microarray analysis

Dataset S1 (XLS)

PNAS PNAS