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I. Modeling Genetic Composition of a Small Nuclear
Population
We estimate the number of nuclei needed to populate a single
hyphal tip by two methods: (i) Ramos-Garcia et al. (1) use con-
focal microscopy to measure hyphal tip extension rates in mature
Neurospora crassa colonies. They measure average tip growth rate
of 0.14 μm·s−1; assuming a nuclear division time of 100 min (2), it
follows that 840 μm of hypha [or ∼130 nuclei, assuming a nuclear
density of 1.5 nuclei/10 μm of hypha (1)] are needed to supply
each growing hyphal tip. However, fungi growing under micro-
scopic observation usually grow at suboptimal rates [e.g., race
tube measurements give growth rates of 0.8 μm·s−1 (3)]. (ii) Ac-
cordingly, we also estimate the nuclear population needed to
sustain a tip by indirect methods. Our velocimetry (Fig. 3A) shows
that the growing edge of a mature colony is fed by nuclear flows
extending 20 mm into the colony. Because fusions create a mul-
ticonnected path from the colony interior to its edge, the precise
distribution of nuclei to tips is not straightforward. However,
hyphae of soft (so) colonies do not fuse, creating a tree-like hyphal
network, and so has very similar growth rates (4) and mean nu-
clear velocities (Fig. 3A) to those of wild-type mycelia. Moreover,
nuclear flow within the so network is restricted to a small number
of leading hyphae. We estimated that each hypha feeds 20
growing hyphal tips. It follows that of the 20 mm of leading
hypha, 1 mm of nuclei must produce enough progeny, by mi-
tosis, to populate each tip. Accounting for the density of nuclei
we observed in leading hypha (3 nuclei per 10 μm, e.g., Movie S2),
we arrive at a comparable estimate (300 nuclei) for the number
of nuclei needed to populate a single tip. We note that this pop-
ulation size is probably large for a filamentous fungus, reflecting
N. crassa’s rapid growth. For example, Fusarium oxysporum
germlings have only a single mitotically active nucleus per hyphal
tip (5).
How would genetic diversity evolve within each hypha in the

absence of nuclear mixing? As a null model for the population
evolution, we model the division of a group of 130 genetically
mixed nuclei at the hyphal tip by a Moran process (6, 7). We
discover that the richness of the apical population decreases
exponentially with time: Simulated hyphae show loss of genetic
richness and even total homogenization. Specifically we model
the dynamics of a population of N nuclei that contains two dis-
tinguishable nucleotypes (“red” and “green”) as a two-species
population (7). We assume that nuclei divide independently
and at random with mean interdivision time τ (Fig. S1A). When
a division occurs, a single nucleus picked at random from among
the dividing population divides into two identical copies. To
maintain the fixed size of the population, a second nucleus
picked at random from the original population is removed from
the population: We consider such nuclei as being left behind in a
subapical compartment, while the rest of the dividing population
advances with the hyphal tip. If we denote the number of red
(i.e., hH1-DsRed transformed) nuclei by nr , then nr performs a
random walk on the set f0; 1; . . . ;Ng. Then if the population’s
genetic diversity is measured by the heterozygosity, Hk after k
nuclear divisions, i.e., the probability that two randomly selected
nuclei have different nucleotypes, HðnrÞ= 2nrðN − nrÞ=N2, it can
be easily shown that EðHk+1jHkÞ= ð1− 2=N2ÞHk. If we define a
generation time for the system (the length of time taken for each
nucleus to divide once, on average) by τg =Nτ≈ 100 min, then at
time t, then in the limit of large N, the expected heterozygosity of

the system is given by HðtÞ=Hð0Þ  exp  ð−2t=NτgÞ (Fig. S1B), i.e.,
decays exponentially with the distance grown by the colony. By
contrast, our measurements in real N. crassa heterokarya show
that diversity, sampled over 130 nuclei drawn from the hyphal
tips, increases as the colony grows. It follows that additional
nuclear dynamics, missing from the Moran model, exist within
real N. crassa colonies.

II. Defining an Index of Mixing for Heterokaryotic Colonies
We use stdðprÞ—the SD in the proportion, pr , of hH1-DsRed–
labeled nuclei between samples of 130 nuclei taken from the
hyphal tips of the colony—as an index of how well mixed the two
nucleotypes are. We choose 130 nuclei as the minimum number
of nuclei necessary to fill the space continually created at a
growing tip (SI Text, section I). The rationale for choosing stdðprÞ
as a measure of mixing is that if the nucleotypes are perfectly
well mixed, then the nuclei in the sample should have indepen-
dent nucleotypes. Thus, in a sample of Nnucl nuclei, we expect
stdðprÞ∼ 1=

ffiffiffiffiffiffiffiffiffiffi
Nnucl

p
, i.e., to go to zero as the sample size is in-

creased. In fact, stdðprÞ seems to asymptote to a constant value as
Nnucl is increased (representative data for one growth stage are
shown in Fig. S2). stdðprÞ not decaying to zero as Nnucl is in-
creased indicates that nuclei are not well mixed, and we use
stdðprÞ as an index of the quality of mixing, with smaller values
indicating better mixing. An explicit comparison of the pr dis-
tributions between well-mixed and unmixed chimeras is shown in
Fig. 4E. Note also that stdðprÞ varies only weakly with Nnucl, so
our mixing index is not affected by uncertainty in the number of
nuclei needed to populate each tip.

III. Measuring Nuclear Dispersal in Wild-Type and so
Colonies
A. Controlling for the Number of Labeled Spores Inoculated into the
Colony. We performed a control experiment to test that intro-
ducing large numbers (∼75,000 spores) of hH1-gfp conidia into
wild-type colonies did not strongly affect the network and nu-
clear flows within the colony. One-dimensional colonies were
grown following the protocol in the main text; i.e., one edge of a
40 × 50-mm agar block was inoculated with 6 μL of wild-type
spores (∼ 6× 105 spores). Once the colony edge had advanced
20 mm, a 0.75-μL droplet of hH1-gfp spores was inoculated into
the colony, 4 mm behind the colony edge. We prepared conidial
suspensions at different concentrations, to vary the number of
spores introduced into the colony from 750 spores to 75,000
spores. The conidial suspensions were prepared 24 h before their
inoculation into the unlabeled colony. Conditioning spores by
storing them overnight in deionized water was found to increase
the rate of fusion between spores and unlabeled colony, partic-
ularly when spores were inoculated into so colonies (main text).
For all droplets assayed, the first fusions were observed 4 h after
inoculation. We measured the distributions of nuclei within the
colony 5 h after inoculation (i.e., 1 h following the first fusion),
using a Zeiss SteREO Discovery V12 fluorescence stereomi-
croscope with a motorized stage, visualizing the colony at 33×
magnification, with a 10× long working distance M2BIO front
lens. Nuclear densities (number of nuclei per area) were mea-
sured on transects perpendicular to the direction of growth, us-
ing a combination of manual counting of nuclei, or, when nuclear
densities were too large for nuclei to be counted manually, using
automated image analysis. We measured the mean and maximal
distance that nuclei traveled into the colony. Measurements were
consistent across three replicates at each concentration. We

Roper et al. www.pnas.org/cgi/content/short/1220842110 1 of 12

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1220842110/-/DCSupplemental/sm02.mov
www.pnas.org/cgi/content/short/1220842110


found that nuclei dispersed rapidly through the colony even at
the lowest concentration of spores (750 spores) (Fig. S3), proving
that rapid nuclear dispersal is not a result of reconfiguration of the
hyphal network in response to encountering the labeled spores.

B. Comparing Nuclear Dispersal Between so and Wild-Type Colonies.
Although nuclei introduced into so colonies disperse as rapidly
through the colony from the sites of their introduction as in wild-
type colonies (Fig. 4A), we noted (representative micrographs in
Fig. S4) that nuclei moving through the so colony remain closely
packed together, whereas in wild-type colonies nuclei became
spread apart from each other during their transport through the
hypha. This observation inspires a mathematical model (main
text and SI Text, section VIII) for how the velocity field created by
fusions causes sibling nuclei to arrive at the growing tips at well-
separated times.

IV. Measuring Nuclear Kinematics
A. A Hybrid Particle Image Velocimetry–Particle Tracking Method.
Under our fluorescence imaging (our microscopy setup is de-
scribed in the main text, Materials and Methods) nuclei appear as
bright spots. The displacements of spots between frames (typi-
cally the time lapse between image captures is between 0.1 and
0.5 s) allows us to calculate nuclear velocities. There are two
commonly used techniques for determining particle displace-
ments. Particle imaging velocimetry (PIV) treats the bright spots
as tracers of an underlying coherent velocity field and computes
cross-correlations of small windows of the image to assign ve-
locity fields. Nearby nuclei are assumed to be moving coherently
(i.e., with similar speeds), and individual nuclei do not need to be
tracked. Conversely, particle tracking (PT) explicitly identifies
spots between frames and allows measurement of individual
nuclear velocities. However, it is less effective when, as here,
the bright spots are dense enough, or their velocity is large enough,
that the distance traveled by a spot between frames is comparable
to or greater than the spacing of spots. We developed a method
that hybridizes these two techniques to obtain individual nuclear
velocities for fields containing up to 104 nuclei. First, we used the
PIV code MatPIV (8) to extract the PIV data. Then we used
a modified version of the particle locating method of Grier and
Crocker (9) to identify the movements of individual particles
between frames. Specifically, we used high and low pass filters to
remove pixel noise and subtract background brightness of the
hyphae, reducing the image to bright spots on a uniformly dark
background. Nuclei were identified by thresholding this image
using Otsu’s method and then characterized by their size and
brightness-over-background. Because nuclei were only a few
pixels across, we found that the method of Grier and Crocker,
which finds the centers of bright spots as the intensity weighted
centroid of a masked area of the image, produced pixel-locked
displacements. Instead, we used cubic splines to interpolate the
intensities and locate the brightest spot in each nucleus to sub-
pixel precision.
Given a particle number i, location xð1Þi , size rð1Þi , and total

intensity Ið1Þi in the first frame, our hybrid PIV-PT scheme in-
terpolates the gridded velocity field obtained from the PIV scheme
as an initial guess for the particle displacements upi . We then
compute the particle displacement between frames by perform-
ing a greedy minimization over all particle data in the second
frame ðxð2Þj ; rð2Þj ; Ið2Þj Þ, the quantity

���xð2Þj − xð1Þi − u*i
���2 + α

�
rð2Þj − rð1Þi

�2
+ β
�
Ið2Þj − Ið1Þi

�2
[S1]

that finds the nucleus in the second frame whose displacement
from i most closely matches the displacement predicted from the
PIV data, while also remaining consistent in size and brightness.

Empirically we find that any small values for the parameters α
and β produce robust nuclear tracking: In these analyses we used
α= 0 and β= 0:001. Working at 10× magnification, our hybrid
PIV-PT algorithm produces simultaneous and accurate measure-
ments of particle velocities for fields containing up to 104 nuclei
(Fig. S5).

B. Correcting for Finite Focal Thickness. We find that the number
density of nuclei ðnℓÞ observed in unit length of any hypha in-
creases in direct proportion with the hyphal diameter d [rather
than with its cross-sectional area (Fig. S6)], which is what we
would expect if the nucleocytoplasmic volume fraction were in-
dependent of the hyphal dimensions. We interpret this to mean
that we are collecting light only over a fixed thickness, λ of hy-
pha: The measured number is therefore related to the number
density of nuclei per unit volume, nv by nℓ = λdnv. Other nuclei
may be out of focus or obscured behind other bright nuclei.
Thus, when measuring the true number of nuclei per unit hyphal
length (e.g., to calculate the flux in the hypha), we correct by
multiplying nℓ by the diameter of the hypha. Although correction
allows the relative fluxes between hyphae to be observed, it
means that individual flux measurements include the unknown
length scale λ.

C. Hyphal Growth Under Microscopic Observation Is Suboptimal.
During all of our experiments N. crassa colonies were incubated
at 25 °C in constant light. Under these conditions we obtained
growth rates of ∼3 mm·h−1 = 0.8 μm·s−1, consistent with previous
measurements (3). However, tip growth velocities measured
during fluorescence microscopy were significantly slower [0.24 ±
0.002 μm·s−1 (mean ± SE) based on 708 tips measured over three
different colonies]. The mean growth rate of 0.14 μm·s−1 pre-
viously reported by Ramos-Garcia et al. (1) is also significantly
less than the optimal colony growth rate. Fluorescence micros-
copy apparently provides suboptimal conditions for hyphal growth.
We expect that the increased growth rate for optimally growing
colonies will create increasedmean nuclear velocities (Figs. 3 and 5)
and fluxes (Fig. 4) over our measurements. For this reason, we
compare rates of nuclear dispersal (Figs. 2B and 4A) during op-
timal growth with the maximum hyphal growth rate, rather than
with the nuclear velocities that we measured experimentally.

V. Distinguishing Nucleotypes and Genotypes
Because the mRNAs coding for the labeled histones must travel
from the nuclei to sites of translation in the cytoplasm, and be-
cause histones can then diffuse through the cytoplasm before
being taken up by a nucleus, nucleotypes (i.e., DsRed/GFP fluo-
rescence levels) become gradually decoupled from the nuclear
genotypic identities as nuclei take up heterogeneously labeled
histones from the surrounding cytoplasm. In fact, we found that as
a colony increases in size, not only were heterotypic nuclei created
(i.e., containing both hH1-GFP and hH1-DsRed labels), but also
the relative proportion of homotypic hH1-GFP–labeled nuclei
appeared to increase. Because homokaryotic hH1-GFP colonies
and hH1-DsRed colonies have the same rates of growth and
both labeled histones were under the Pccg-1 promoter, we do not
believe this to be a result of differential rates of mitosis between
the two nuclear genotypes or of different rates of production of
the labeled histones: Rather, DsRed appears to be gradually
sequestered into cell vacuoles (although we are not able to de-
termine whether this sequestration is preceded by cleavage of the
fluorophore from the histone). Thus, real-time imaging of the
dynamics of nuclear populations within chimeric N. crassa myce-
lium monitors only nucleotypic mixing, and we cannot infer the
underlying genotype abundances. Diffusion of labeled histones
between nuclei may account for some of the increase in observed
well-mixedness with time.
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Fluorescence of conidia, the asexual spores of the colony, is
a reliable indicator of genotype distributions within the colony. To
test this, we harvested spores from a 7-d-old heterokaryon and
measured spore fluorescence for ∼1,000 spores by imaging at 40×
with an upright microscope (main text, Materials and Methods),
categorizing spores as homokaryotic hH1-DsRed/homokaryotic
hH1-GFP/heterokaryotic. We then plated out conidia on sorbose
media [1× Vogels salts, 0.4% sucrose, 0.8% D-sorbose, and 1.5%
(wt/vol) agar] and measured the proportions of homokaryotic or
heterokaryotic colonies produced. Although it is possible that,
e.g., a genetically homokaryotic hH1-GFP conidium may contain
enough residual hH1-DsRed to appear to be heterokaryotic, it is
unlikely that a colony grown from this conidia would have sig-
nificant dsRed fluorescence. Accordingly, we use the identity of
the colonies as an estimate of the true genetic identity of the
spores. We found that fractions of the three different categories
were statistically indistinguishable between spore measurements
and colony measurements of nucleotype identity (Table S1).
Conidial abundances therefore allow measurement of the frac-

tions of genotypes in a heterokaryotic colony, but with the disad-
vantage that evolution of genotypic fractions cannot be tracked
before conidiation. To measure conidial genotypes we scraped
conidial chains from a colony, using a hypodermic needle, and
dipped the needle into a water droplet on a slide. The hydro-
phobicity of the spores drives the conidial chains off the needle,
and many spores disassociate. We imaged intact fragments: chains
of at least five spores. Imaging these chains at 40× magnification
(main text, Materials and Methods) we can both count the number
of nuclei in the spore and categorize spores into the categories
above. We then computed the maximum-likelihood estimate for pr
(the probability that a nucleus has a hH1-DsRed genotype) for each
conidial chain, assuming that each nucleus in the chain is drawn
independently and at random. In fact, the work of Atwood and
Mukai suggests that nucleotypic proportions in conidiophores are
slightly overdispersed (10), so that there are fewer heterokaryotic
conidia than would be expected under this model, so we test for
consistency that our likelihood maximization produces close to the
observed proportion of conidia in all three categories. Our
measurements (maintext, Fig. 1C) show that the well-mixed-
ness of genotypes within conidiophores, stdðprÞ is very close to the
value obtained by measuring nucleotypes within the mycelium
ðstdð prÞ= 0:09Þ, suggesting that nucleotypes and genotypes are
distributed statistically similarly through the colony.

VI. Calculation of and Optimization of pmix in Colonies That
Lack Hyphal Fusion
A. Random Branching Colonies. To model random branching, we
consider the branching of an individual hypha as a Poisson
process, so that the interbranch distances are independent ex-
ponential random variables with mean λ−1. Then if we denote by
pkðxÞ the probability that exactly k hyphae have been produced
(i.e., k − 1 branching events occur) over a distance x of leading
hyphal growth, then the fpkg satisfy master equations:

dpk
dx

= ðk− 1Þλ pk−1 − kλ pk: [S2]

To solve these equations, we introduce a generating function
Gðx; ξÞ=PkpkðxÞξk. In terms of this function, the complete set of
master equations can be written as a single linear hyperbolic partial
differential equation on G:

∂G
∂x

− λξðξ− 1Þ ∂G
∂ξ

= 0: [S3]

We can solve this equation by the method of characteristics,
obtaining Gðx; ξÞ= ξ=ðξ− ðξ− 1ÞeλxÞ. By expanding G as a power

series in ξ we obtain explicit expressions for each of the like-
lihoods, pk: pkðxÞ= e−λxð1− e−λxÞk−1; i.e., the pk have a geometric
probability distribution with parameter e−λx. Suppose we examine
the colony at some distance x between the first branching of the
leading hypha x= 0 and the mycelial edge x= x2. Because hyphae
divide randomly and independently in this model, the distribu-
tion of tips fed by a hypha at any distance x from the first branch
point (and distance x2 − x from the hyphal tips) is pkðx2 − xÞ.
The likelihood that any randomly chosen hypha feeds exactly
k tips is Pk =

R x2
0 hkðxÞipkðx2 − xÞ  dx= R x20 hkðxÞidx, where hkðxÞi≡P

kkpkðxÞ= eλx is the average number of hyphal tips fed by a
leading hypha that grows a distance x. Inputting the known geo-
metric distribution for pkðxÞ, we can evaluate these integrals:

Pk =

�
1− e−λx2

�k�ke−λx2 + 1
�

kð1+ kÞ : [S4]

It follows that if λx2 � 1 (i.e., the original leading hypha feeds
a large number of tips), then Pk ∼ 1=kðk+ 1Þ. Then the likelihood
of a pair of nuclei being delivered to different tips is

pmix = 1−
X
k

Pk
�
k= 2− π2

�
6≈ 0:355: [S5]

To generate numerical data for pmix for a colony with a biologi-
cally reasonable number of tips, we performed stochastic simu-
lations, in which the hyphal branching pattern was determined by
allowing a colony with n branches to grow an Expð1=nλÞ distance,
and then one of the n branches was picked at random with equal
probabilities and split into two branches. We found that for
a colony with 100 tips the average value for pmix = 0:368, close
to the asymptotic value given by Eq. S5.

B. Colonies with Organized Branching. The geometry of a branching
tree in which the interbranch distances are prescribed is com-
pletely specified by the sequence of hyphae that branch. We
therefore search for optimally branching trees by searching over
a space of sequences fxi   : i= 1; 2;⋯N − 1 and xi ∈ f1; 2; . . . ; igg,
where N is the total number of tips fed by the entire branching
structure. Starting from a randomly generated branching se-
quence, we use a Monte Carlo method to iteratively minimize
pmix by sweeping through the indexes i and generating new values
of xi. Although this method rapidly converges to a local mini-
mum value of pmix that cannot be improved by changing any
single branch xi, we found multiple local minima, all close to the
global minimal value of pmix. The existence of a manifold of local
optima seems to result from pmix minimization only weakly
constraining the branching sequence in the interior of the colony,
while stringently constraining the branching points closest to the
colony periphery and the relative lengths and numbers of hyphae
feeding one, two, or three tips only (Fig. S7).
We argue in the main text that the maximum value of pmix

occurs when for each value of x, each hypha located at distance x
downstream of the leading hypha feeds the same number of tips.
Equidistribution is possible only when the total number of hy-
phal tips, N is large. Under the equidistribution assumption, the
probability of the sibling nuclei produced by a mitosis at distance
x feeding into different tips is 1−m=N, wherem is the number of
hyphae at position x. Then on averaging over all nuclei at all
stations (noting that the range of x-values over which the colony
contains exactly m hyphae is ∝ 1/m) we obtain

pmix =

XN

m= 1

�
1−

m
N

�
XN

m= 1
1

= 1−
NðN + 1Þ

2N2 ∼
1
2
; [S6]
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i.e., a large tree with many branches must have mixing probability
that is asymptotically no greater than 1

2, consistent with our nu-
merical simulations.

VII. Taylor Dispersion Is Weak Within Individual Hyphae
The long time mixing of a solute flowing through a capillary
network is dominated by Taylor dispersion within individual
capillaries. Applying Saffman’s model (11) (which does not in-
clude differences in hyphal cross-sections or interbranch dis-
tances), we would expect this Taylor dispersion to generate large
enough variation in the time of delivery of sibling pairs of nuclei
to the growing edge of the colony to ensure that they do not
arrive at the same hyphal tip (main text). However, velocity
profiles within hyphae are very different from flows in capillaries.
Nuclear movements have a large random component, suggestive
of frequent collisions with septa, other nuclei, and other organ-
elles. To accurately extract mean flow profiles across the hyphal
cross-section we averaged a large number of individual nuclear
velocity measurements Nnucl collected from Nhyph different mea-
surements. When nuclear velocities were scaled by the extrapolated
centerline velocity within the hypha, and distances from the
centerline scaled by the hyphal radius, we obtained a universal
dependence of the (time and axially averaged) velocity v
upon radial position r : v= 1− r2=ð1+2ΛÞ2 (Fig. S8B). The par-
abolic dependence of velocity upon the radial coordinate is
consistent with Poiseuille flow in which friction between the
hyphal walls and cytoplasm resists the pressure driving the flow.
However, our measured nuclear velocities do not decrease to
zero at the hyphal wall. Instead, there is effective hydrodynamic
slip on the wall (12) that we can effectively parameterize as being
associated with a slip length, λ equal to 0.2 × the hyphal di-
ameter. (Our resolution of the distance between nuclei and the
hyphal wall is not high enough to determine whether this slip
length truly scales with the hyphal diameter or whether there is
also a minimum slip length associated with the narrowest hyphae.)
We can only speculate at the physical origins of this slip length—
whether crowding from organelles prevents nuclei from touching
the hyphal walls or whether a combination of the mobility of
molecules in the hyphal cell membrane and nuclear envelope al-
lows the two to slide past each other when there is contact.
Nonetheless, nuclei were also much more concentrated at the
center of the hypha than near hyphal walls (Fig. S8A), occupying
typically the central 60% of the hypha, probably because of
crowding from other organelles and vacuoles at the walls. From
the combination of these two effects, the total velocity dif-
ference between innermost and outermost nuclei is only 25%
of the total velocity difference across an equivalently sized
capillary, and because changes in solute velocity as a particle
diffuses across the cross-section of a capillary drive its
downstream dispersion, dispersion is much weaker also.
Quantitatively, we can reproduce the analysis of Taylor (13)
to compute the hydrodynamic dispersion in the presence of
slip and nuclear confinement (here we follow a multiple-scales
argument originating with Jonathan Mestel, rather than Taylor’s
original analysis).
On defining cylindrical polar coordinates ðr; zÞ, with the z

axis along the axis of the hypha, the time-averaged axial ve-
locity in a hypha with diameter a is equal to u= uðrÞez, where
uðrÞ= 2U

2− χ2 + 4Λ ð1+ 2Λ− r2=a2Þ, Λ= λ=a is the nondimensionalized
slip length, nuclei are confined to a region 0< r< χa of the hypha,
and U is the axial velocity averaged over this region. If the proba-
bility of locating a single nucleus in an annulus r∈ ðr′; r′+ drÞ and
z∈ ðz′; z′+ dzÞ is pðr; zÞdrdz, then the probability density function
pðr; z; tÞ evolves with time according to the advection–diffusion
equation

∂p
∂t

+ uðrÞ ∂p
∂z

= D
	
1
r
∂
∂r

	
r
∂p
∂r



+
∂2p
∂z2



; [S7]

where D is the diffusivity of the single nucleus. Three effects
lead to nuclear diffusion: Brownian motion, nuclear transloca-
tion by molecular motors, and random collisions of nuclei with
each other and with other organelles within the cytoplasm.
Because nuclei are relatively large objects (∼3 μm), we expect
the last two effects to dominate. In the slow flows of nuclei near
hyphal tips (U ≈ 0:1 μm·s−1) motor-driven movement is already
known to be the major correction to bulk cytoplasmic transport
(1), but in the faster flows that we observe in leading hyphae
ðU ≈ 1− 5 μm·s−1Þ, we expect that collisions that produce a dif-
fusivity D∼Uℓ, where ℓ is the mean intercollision distance (we
estimate ℓ≈ 3− 10 μm from images of vacuoles and other large
organelles within a hypha), may become dominant. We follow
Mestel by separating p into cross-sectional average and r-vary-
ing contributions: pðr; z; tÞ= pðz; tÞ+ p′ðr; z; tÞ, where p is the
cross-section average of the probability density function. Then,
denoting cross-section averages by overbars, we can average the
entire Eq. S7 to obtain

∂p
∂t

+U
∂p
∂z

+ uðrÞ ∂p′
∂z

= D
∂2p
∂z2

: [S8]

Subtract Eq. S8 from Eq. S7 and break p up into average and
r-varying contributions to obtain

∂p′
∂t

+ uðrÞ ∂p′
∂z

− uðrÞ ∂p′
∂z

+
�
uðrÞ−U

� ∂p
∂z

=D
	
1
r
∂
∂r

	
r
∂p′
∂r



+
∂2p′
∂z2



:

[S9]

For a long, narrow hypha, length L, we expect diffusion in the r
direction to be a factor L2=a2 stronger in this equation than
diffusion in the z direction. Under this strong radial diffusion,
after a time t≳ a2=D, the nucleus will have diffused across the
entire cross-section of the hypha, making its distribution in r
close to (but not identically) uniform: It follows that jp′j � p,
so the dominant balance in this equation is between the terms:

�
uðrÞ−U

� ∂p
∂z

=
D
r
∂
∂r

	
r
∂p′
∂r



: [S10]

We can integrate this equation to obtain an expression relating p′
to the axial gradient in p :

p′ =
U

4ð2+ 4Λ− χ2ÞD
	
χ2r2 −

r4

2a2
−
χ4a2

3



[S11]

(We use p′= 0 to obtain the constant term, above). We may then
substitute for the subdominant terms uðrÞ ∂p′∂z in Eq. S9,

uðrÞ ∂p′
∂z

= −
U

2
a2χ8

48Dð2− χ2 + 4ΛÞ2
∂2p
∂z2

; [S12]

to obtain a one-dimensional (1D) advection–diffusion equation
for p :

∂p
∂t

+U
∂p
∂z

= D

 
1+

U
2
a2χ8

48D2ð2− χ2 + 4ΛÞ2
!
∂2p
∂z2

: [S13]

The second term on the right-hand side of this equation is the
Taylor dispersion coefficient, representing the enhancement of
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axial diffusion by diffusion across the cross-hyphal velocity gradi-
ent. Because χ < 1, even for moderate values of nuclear confine-
ment the Taylor dispersion coefficient scales like χ8. Using the
parameters that we measure for real fungal hyphae (χ = 0:7,
Λ= 0:2), we see that the Taylor dispersion coefficient is 0.007
times smaller than if nuclei were allowed to occupy the entire
hyphae and 0.3 times smaller than for an equivalent-sized capil-
lary with no-slip walls. Dispersion within hyphae, which is the
major contributor to dispersion in model capillary networks, is
therefore not sufficient to deliver nuclei to growing tips at well-
separated times, leading us to hypothesize that velocity varia-
tions between hyphae create the time-of-travel variance in real
fungal networks.

VIII. Modeling Variation in Travel Times from the Colony
Interior to the Hyphal Tips
In the main text we present a simple model for the variation in
speed of a nucleus that moves through the hyphal network and
whose speed varies when it passes through a hyphal junction or
branch point. Specifically, the time taken to travel a distance x and
velocity of the nucleus v on traveling this distance satisfy ran-
dom-walk equations

dt =
dx
v

  and   dv= σðvÞdWx=ℓ; [S14]

where Wx=ℓ is a Wiener process (14), ℓ is the distance traveled by
the nucleus between branch or fusion points (assumed to be
constant), and σðvÞ is the rms change in nuclear velocity on
moving from one hypha to another. Then the joint probability
density function for the particle to take time t to travel distance
x and attain a velocity v on doing so, pðx; t; vÞ, satisfies a Fokker–
Planck equation

∂p
∂x

= −
1
v
∂p
∂t

+
1
2ℓ

∂2

∂v2
�
σðvÞ2 p

�
; [S15]

where x is measured relative to the position of the mitotic event,
and assuming that the speed of the nucleus is initially prescribed,
so pð0; t; vÞ= δðtÞδðv− vpÞ. For given x, we are interested in com-
puting the variance in travel times, as a function of distance
traveled, i.e., T2≡

RR
t2pðx; t; vÞdt  dv− ðRR tpðx; t; vÞdt  dvÞ2, which

gives us a measure of how far apart in time two sibling nuclei
starting from the same location in the hyphae are delivered to
the hyphal tips, distance x downstream. We moreover assume that
the set of possible speeds is compactly supported, va ≤ v≤ vb, and
for conservation of probability, ∂

∂v ðσ2pÞ= 0 for v= va and v= vb.

A. Variation in Travel Times for Large Travel Distances. To compute
the asymptotic behavior of T2 for nuclei traveling large distances
through the hyphal network we use the method of moments, first
introduced by Aris (15). Specifically, we define moments of the
distribution p, by

pnðx; vÞ≡
Z 	

t− x
�
1
v

�
n

pðt; x; vÞ dt; [S16]

where h1vi=
RRR

1
v pðt; x; vÞ  dv  dx  dt is the average of the inverse

velocity 1/v. Then by direct integration of Eq. S15 we obtain

∂p0
∂x

=
1
2ℓ

∂2

∂v2
�
σ2p0

�
: [S17]

In the limit of large x we expect that p0 will converge to the
marginal function of v; i.e., the nucleus will lose knowledge of
its starting velocity, giving p0ðvÞ∼A=σðvÞ2, where A is a constant

that is needed to achieve the overall normalization
R  p0ðvÞ  dv= 1.

In this same limit h1vi∼
R

A
vσ2   dv.

Multiplying Eq. S15 by powers of
�
t− xh1vi

�
and integrating, we

obtain equations for higher-order moments of p:

∂p1
∂x

=
	
1
v
−
�
1
v

�

p0 +

1
2ℓ

∂2

∂v2
�
σ2p1

�
[S18]

∂p2
∂x

= 2
	
1
v
−
�
1
v

�

p1 +

1
2ℓ

∂2

∂v2
�
σ2p2

�
: [S19]

p1 and p2 therefore have asymptotic forms that are also indepen-
dent of x, with

∂2

∂v2
�
σ2p1

�
∼ − 2ℓ

	
1
v
−
�
1
v

�

p0: [S20]

Introduce a series of auxiliary functions fHiðvÞg by

H0ðvÞ=
	
1
v
−
�
1
v

�

A
σ2

[S21]

HiðvÞ=
Zv
va

Hi−1ðvÞ  dv   ∀i> 0; [S22]

then as x→∞,

p1ðvÞ∼ −
2ℓH2

σ2
+
B
σ2
; [S23]

where B is a constant that contains information about the initial
conditions. To determine B note that if T1ðxÞ≡

R
p1ðx; vÞ  dv, then

dT1

dx
=

d
dx

Z
p1   dv =

Z 	
1
v
−
�
1
v

�

p0   dv= 0: [S24]

Thus, T1ðxÞ=T1ð0Þ= 0 because of our prescribed initial condi-
tions, which requires

B = 2ℓA
Z

H2

σ2
  dv [S25]

and implies that the mean time for the nuclei to travel a distance x
is, as we would expect, xh1vi.
The variance in time to travel distance x is therefore T2≡R
p1   dv. Now,

dT2

dx
=

d
dx

Z
p2   dv= 2

Z 	
1
v
−
�
1
v

�

p1   dv

∼ − 4ℓ
Z 	

1
v
−
�
1
v

�

H2

σ2
  dv

= −
4ℓ
A

Z
H0H2   dv

=
4ℓ
A

Z
H2

1   dv;

[S26]

where we integrated by parts to arrive at the final expression.
It follows that the variance in arrival times, T2, increases lin-

early with distance traveled. Moreover, we can compute the func-
tional dependence of σðvÞ upon v up to an unknown constant
of proportionality by measuring the distribution of nuclear
velocities at any station in the colony, because this measure-
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ment gives us precisely p0 ∝ σðvÞ−2. Our measurements (main
text, Fig. 4B) suggest that independently of colony size,
σðvÞ= σ0 is approximately constant. In that case, for large x,

p0ðvÞ∼ 1
vb − va

⇒

dT2

dx
=

4ℓ
σ20

 
1
3
v2b + vavb + v2a
ðvb − vaÞ2

log
	
vb
va


2

−
3
2
va + vb
vb − va

log
	
vb
va



+ 2

!
;

[S27]

which yields Eq. 4 from the main text in the limit va � vb.

B. Variation in Travel Times for Small Travel Distances. For nuclei not
traveling far from their starting locations, we can compute the
dependence of T2 upon distance x, conditioned on the nuclear
starting velocity vp, by making a formal series expansion in
powers of x of the solution to Eq. S15:

pðx; t; vÞ∼
X
n

xn

n!
~pnðt; vÞ;  where  ~pn ≡

	
−
1
v
∂
∂t
+
1
2ℓ

∂2

∂v2
σ2


δðtÞδ�v− v*

�
:

[S28]

Then

T1ðxÞ ≡
ZZ

tpðx; t; vÞ  dtdv∼ x
v p

+
x2σðv*Þ2
2ℓv p 3

+ o
�
x2
�

[S29]

and

T2ðxÞ ≡
ZZ

t2pðx; t; vÞ  dtdv−T1ðxÞ2

∼
x2

v*2
+
4x3σðv*Þ2
3ℓv p 4

−T1ðxÞ2 + o
�
x3
�
∼
x3σðv*Þ2
3ℓv p 4

+ o
�
x3
�
:

[S30]

To compute the total expected variability in travel times, we must
multiply by the marginal probability for the start velocity vp, com-
puted in the previous section as p0ðvpÞ=A=σðvpÞ2, and obtain

EðT2ðxÞÞ=
Z

T2ðxÞp0
�
v*
�
  dv p ∼

Ax3

9ℓ

 
1
v3a

−
1
v3b

!
: [S31]

Note that, unlike the long time dispersion in arrival times, this
quantity does not depend explicitly on the function σðvÞ, except
through the constant of normalization A. There is thus limited
scope for the fungus to optimize mixing over short distances by
manipulating σðvÞ.
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Fig. S1. (A) In most filamentous fungi, a small apical population of nuclei is sufficient to feed each growing tip by mitosis. Supposing no mixing between
populations supplying different tips, we model the decrease in genomic richness in this small population by a Moran process, one step of which is shown: In an
increment of growth xg=N, one nucleus produces two clonal offspring, and another nucleus is removed from the apical population (birth and migration out of
the apical tip are shown by arrows). (B) The richness (heterozygosity) of a small nuclear population is expected to decrease exponentially with the distance
grown by the hyphal tip. We simulated 500 hyphal tips starting with equal numbers of red and green-labeled nuclei: ðnr ;NÞ= ð65; 130Þ. The grayscale plot
shows the composition (heterozygosity, H) of all 500 hyphal tips (black, most hyphal tips; white, fewest). In a substantial fraction of tips (81/500, after 3 cm of
growth), H→0; i.e., one or the other of the populations becomes totally extinct. The solid blue curve is the mean heterozygosity for all 500 hyphal tips and the
dotted line is the predicted decay in heterozygosity HðxÞ=Hð0Þ  exp  ð−2x=NxgÞ, where xg is the distance grown by the colony in a single generation:
xg ≈0:84 mm.
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Fig. S2. stdðprÞ is an index of mixing quality in a chimeric colony. Black: Dependence of stdðprÞ on the number of nuclei in each sample ðNnuclÞ. Data from a
2-cm mycelium are shown. Error bars: SE from four replicate colonies. Blue: Simulated dependence of stdðprÞ upon Nnucl, in the limit of perfect mixing (hpri
matched to the real data, and each nucleus assigned its nucleotype independently and at random).
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Fig. S3. By varying the concentration of the spore inoculum, we checked that the wt colony architecture and dispersal of hH1-GFP nuclei is not affected by the
number of hH1-gfp spores introduced into the colony. We report both the maximal distance traveled by the nuclei (dashed line) and the mean distance (solid
line) in 1 h (mean pm SD from three replicates).

so wt 

Fig. S4. Nuclei introduced into either wild-type or so colonies disperse at the same rate from their sites of introduction to the growing hyphal tips of the
colony. However, in wild-type colonies (Left, hH1-GFP nuclei in a calcofluor-stained colony), nuclei (circled in orange) become spread apart during their passage
through the colony. In so colonies (Right, hH1-GFP nuclei in a colony imaged in DIC), nuclei move as a coherent raft, suggesting that sibling nuclei do not arrive
at the growing front well separated in time. (Scale bars, 50 μm.)
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Fig. S5. By hybridizing PIV and PT methods we are able to simultaneously measure the spatially complex velocities of several thousand nuclei within a single
imaging field. (A) Scheme of how PIV and PT methods are used to track nuclear dispersal. A PIV step measures the mean velocity of groups of nuclei (black
dashed box) whose motions are coordinated. However, nuclei also move within groups. Because reorganization of nuclei within groups also contributes to
mixing, we then implement a second particle-tracking step: Nuclei are located and morphologically categorized. The position of each nucleus is extrapolated to
the next frame (red arrow), and then the corresponding closest-matching nucleus (based on Eq. S1) is identified by a greedy algorithm (blue line). (B) A single
frame of real PIV/PT data. Shown are reconstructed nuclear displacements over 0.2 s, from a 0.3 × 0.3-mm field (real imaging fields were 0.7 × 0.7 mm). We
show two consecutive frames in the magenta and green color channels. Moving nuclei show up as pairs of spots, one magenta and the other green. Lines are
color coded by nuclear velocity. (Left) Magnified region shown by yellow rectangle in the Right image. (Scale bars, 50 μm.)
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Fig. S6. Number density of nuclei, i.e., number of nuclei counted in unit length of hypha, increases in proportion to the hyphal diameter. Blue circles represent
nuclear number densities of 3,300 hyphae, including hyphae at the edge of the colony, and 8 mm behind the colony edge. The black curve is the line of best fit,
whose equation is number density (μm−1) = 3.02 (μm−2) × diameter − 0.92 (μm−1).
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Fig. S7. Optimization of pmix produces multiple, nearly optimally branching but nonisomorphic trees with similar values of pmix. (Left) Geometry of three
trees, each with 100 hyphal tips, that have close to pmix within 0.05% of its minimal value, compared with the optimal branching geometry (Lower Right).
(Upper Right) Nonisometry of trees is seen by plotting the distribution of the number of tips fed by each hypha (colors of probability distribution curves match
the outline colors for the geometry plots). Minimization of pmix strongly constrains the lengths and relative numbers of hyphae feeding 1, 2, or 3 tips, i.e., the
branching points closest to the colony periphery, but allows considerable freedom in the location of branch points in the colony interior.
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Fig. S8. Average nuclear velocities across hyphal cross-sections are parabolic, a signature of Poiseuille or pressure-driven flow, universally between hyphae
and colonies of different ages, once velocities are scaled by the velocity on the hyphal centerline and distances from this centerline are scaled by the hyphal
radius. Colors denote data from colonies of different sizes: blue, 3 cm; green, 4 cm; and red, 5 cm [ðNnucl,NhyphÞ= ð341,381, 887Þ, ð352,428, 879Þ, and
ð266,384, 737Þ respectively]. However, nuclei are confined to the central portion of the hypha (70% of the total hyphal width). (A) The number of nuclei
detected vs. distance from centerline. (B) Average velocities of those nuclei. Error bars: SE in velocity measurement. Additionally, there is apparent slip on the
hyphal walls, so that nuclear velocities, when extrapolated to the wall, do not vanish there. Black curves are best-fit estimates of the slip length Λ (solid curve,
Λ= 0:3; dashed curve, Λ= 0:2).

Table S1. Proportions of spores and colonies categorized as hH1-
GFP homokaryotic, hH1-dsRed homokaryotic, or heterokaryotic
(containing nuclei of both nucleotypes)

Nucleotypes Conidial identity, n = 1,032 Colony identity, n = 102

hH1-GFP 0.29 0.35
hH1-dsRed 0.11 0.12
Heterokaryotic 0.60 0.53
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Movie S2. (S2-nuclflowneartip-sm.mov.) Sequence of CLSM (and simultaneous bright field) images of hH1-GFP nuclear flow near the tip of a colony. Original
capture rate is one frame per second. Movie plays at 10 × real speed. (Scale bar, 100 μm.)

Movie S2

Movie S1. (S1-heterokaryon.mov.) Sequence of confocal laser scanning microscope (CLSM) images of hH1-DsRed and hH1-GFP nuclei moving around within
a single fungal mycelium. Capture rate is one frame per 7 s. Movie plays at 175 × real speed. (Scale bar, 100 μm.)

Movie S1

Movie S3. (S3-mixingflows-sm.mov.) CLSM image sequence of nuclear flows near the periphery of a 5-mm × 25-mm Neurospora colony. Capture frame rate is
7.5 frames per second. Movie plays at 3.5 × real speed. (Scale bar, 100 μm.)

Movie S3
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Movie S4. (S4-flowreversal.mov.) Flow is reversed when colonies are exposed to hyperosmotic treatments (forward and reverse segments are individually
looped, around 10 s of real time footage). Imaged region is ∼8 mm from the growing edge of a 3-cm colony. Capture frame rate is five frames per second.
Movie plays at 6 × real speed. (Scale bar, 100 μm.)

Movie S4
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