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Supplementary Figure S1 | Characterization of the two-qubit system. a-d, When 

the nuclear spin is polarized along the 1  axis, its free precession signal about the 

0  axis is modulated by the relative angle   between the conditional local fields. 

a-b, When 90  , the centre lines of the free precession signals from the states |  

and |  are offset from each other and the angle   can be measured. The symbols 

are experimental data and the lines are fitting to a cosine function. c-d, When   is 

tuned to be 90  by adjusting the orientation of the magnetic field, the centre lines of 

the free precession signals coincide. The strength 0  was measured to be 

 0.256 2  MHz  by fitting the oscillation signal. e-f, When the nuclear spin is 

polarized along the 0  axis, its free precession about the 1  axis gives 

1 6.410(2) MHz  , in agreement with the pulsed optically detected magnetic 

resonance measurement. 
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Supplementary Figure S2 | State tomography of the two qubits initially in a basis 

state. The system was prepared in two basis states and the state tomography was 

carried out before (a & b) and after (c & d) applying the designed controlled-NOT 

(CeNOTn) gate. The imaginary parts of the measured density matrices were negligible 

(not displayed). a, State tomography on the initial state | 0 with state fidelity of 

0.98(1). b, State tomography on the initial state |1 shows that the state is prepared 

with state fidelity of 0.89(2). c, State tomography on the resultant state after apply the 

gate on | 0 .The nuclear spin was left unchanged with a final state fidelity of 0.93(1). 

d, State tomography on the resultant state after applying the gate on |1 . The 

nuclear spin was flipped with a final state fidelity of 0.86(1).
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Supplementary Table S1 | Timing parameters (in ns) of the DD sequences 

designed for realizing various two-qubit quantum gates. N is the number of pulses, 

and t  denotes the interval between the pulses (note that the pulse sequences are 

symmetric so only the first halves of the DD sequences are listed). 

 

a, Controlled-NOT gate (CeNOTn) 

N   0t   
1t  2t  

3t  4t  
5t  6t  7t  

4 545.3 1013.0 467.8 - - - - - 

6 543.7 1007.5 546.3 82.5 - - - - 

8 409.3 587.1 442.3 596.1 331.6 - - - 

10 388.4 1008.6 399.6 121.0 381.0 39.4 - - 

12 383.9 395.9 327.1 447.6 332.7 407.3 207.1 - 

14 234.3 212.9 311.4 277.7 293.9 203.7 171.0 316.3 

 

b, Nuclear spin Hadamard gate (Hn) 

N   0t   1t  2t  3t  4t  5t  6t  7t  

4 474.6  804.9  330.4  - - - - - 

6 316.5  335.5  333.5  314.6  - - - - 

8 328.3  354.4  300.5  455.2  180.8  - - - 

10 183.8  349.8  162.9  158.6  234.2  72.6  - - 

12 169.4  337.0  168.0  163.7  182.7  155.1  135.7  - 

14 163.0  170.3  162.0  165.9  159.7  163.3  168.7  154.0  

 

c, Nuclear spin Pauli-X gate (Xn) 

N   0t   1t  2t  3t  4t  5t  6t  7t  

4 623.9 936.3 312.4 - - - - - 

6 467.8 779.0 468.2 157.0 - - - - 

8 467.8 466.6 311.6 469.4 156.6 - - - 

10 312.6 309.7 309.3 314.2 313.9 311.8 - - 

12 298.2 461.7 337.8 290.9 290.1 332.9 159.6 - 

14 316.3 293.8 295.0 291.8 287.0 353.5 338.1 297.3 
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d, Nuclear spin Pauli-Z gate (Zn) 

N   0t   
1t  2t  

3t  4t  
5t  6t  7t  

4 234.6  351.1  116.5  - - - - - 

6 211.1  233.8  216.9  194.3  - - - - 

8 153.8  212.6  159.3  215.4  114.9  - - - 

10 104.2  177.0  103.9  119.7  143.2  54.5  - - 

12 82.6  110.1  93.5  114.8  122.0  126.7  53.6  - 

14 68.2  78.0  68.2  78.0  68.3  78.0  68.3  39.0  

 

e, Two-qubit NULL gate (NULL) 

N   0t   
1t  2t  

3t  4t  
5t  6t  7t  

4 117.5  234.0  116.6  - - - - - 

6 77.9  78.1  78.2  78.0  - - - - 

8 82.3  111.3  85.5  123.1  66.7  - - - 

10 51.4  55.8  51.4  51.3  53.3  49.1  - - 

12 55.4  65.3  50.0  71.4  68.6  97.3  6.0  - 

14 35.7  33.9  28.9  36.4  47.1  48.4  43.9  36.9  
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Supplementary Note 1: Theoretical description of the NV centre system 

Pure-dephasing approximation 

Here we discuss the pure-dephasing approximation for the NV centre system. 

We remark that such an approximation is not necessary for the design protocol to be 

applicable though it does simplify the numerical optimization in this work. In this 

subsection we use the magnetic number 0, 1m    to label the centre spin states. 

We model the system by considering an NV centre coupled to the bath spins 

through hyperfine interaction. The bath consists of the 
14

N host nuclear spin and 
13

C 

nuclear spins with natural abundance of 1.1%. Under an external magnetic field 

ˆ
zB  B z B , the system Hamiltonian can be written as 

 
( ) ( )2 (N) 2 ( )

e (N) n ( ) ( ) ( ) ( )( ) ( ) ,
i i jz z i

i i i jS P I 


            B S B I S α I I β I  (S1) 

where ẑ  is along the NV symmetry axis, 2.87 GHz   is the zero-field splitting 

of the NV centre spin, e 2.80 MHz/G   and ( )

n

i  are respectively the gyromagnetic 

ratios of the centre spin S  and the ith nuclear spin ( )iI  ( ( )

n 1.07 kHz/Gi   for a 
13

C 

nuclear spin, and (N)

n 0.31 kHz/G  for the nitrogen spin), 
( )i
α represents the 

hyperfine coupling between the electron spin and the ith nuclear spin, 
( )i j
β represents 

the dipolar interaction between the ith and jth bath spins, (N) 4.95 MHzP    is the 

quadrupole moment of the 
14

N spin, and summation over i and j is implied. Note that 

the subscript and superscript “(N)” is reserved to refer to the 
14

N host nuclear spin. 

When eB   and the hyperfine interaction strength  i  are both e zB  , 

the direct flipping of the NV centre spin between the 1m    states and the   0m   

state is suppressed by the large zero-field splitting  . Therefore, m  is a good 

quantum number and perturbation treatment can be performed by separating the full 

system (i.e. centre spin + nuclear spins) Hamiltonian by  
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where ˆ
 α x  , 

2

x yB iB
B


  , 

2

x yi




α α

α  , x yS S iS    , and 0 ,   

are defined by comparing the corresponding terms. Clearly, the 0, 1m    centre spin 

eigenstates are all eigenstates of the unperturbed Hamiltonian, with eigenenergies 

given by 0   0E   and 1 e zE B   . 

Perturbation treatment, up to second order, gives the effective conditional 

Hamiltonian (acting on the nuclear spins) 
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where | |m m m   is a projection operator. Evaluating, we have 
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Straightforward computation gives 
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with the second order corrections given by 
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where we have assumed 
(N)
α  to be diagonal

39
, and   here refers to the Kronecker 

product between vectors. We remark that 
( )i

δG  is related to the enhanced g-tensor 
( )i

g  by
( ) ( ) ( )

n/
i i i g 1 δG . 

The essence of these conditional Hamiltonians is captured by writing generically 

in the form of 
( )( )

( ) ( ) ( )

i ji

m m m i i jh


  ω I I β I . Generally, the quantization axes of 

the nuclear spins ( ( )i

m ) depend on the state of the centre spin ( m ). Since 

( )

e n| | /( )i

     is of order 1 for a moderately strong hyperfine coupling, the 

enhancement of the g-tensor of the nuclear spin due to virtual flip-flops of the centre 

spin is significant when the magnetic field is not aligned along the NV symmetry 

axis
31,39

. This g-tensor enhancement, however, enters through 0ω  and 1ω  in 

reversed sign. This implies that under a general magnetic field the quantization axes 
( )i

mω  of a particular nuclear spin do not coincide. We also remark that z  becomes a 
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well-defined quantization axis for the ith nuclear spin when BB z  and 
( )i
α  is 

almost diagonal, which are the conditions utilized in ref. 32. 

 

Conditional evolution of the target nuclear spin 

To illustrate the conditional evolution of the nuclear qubit, we restrict ourselves 

to the system formed only by the NV centre spin and the target 
13

C spin (indexed by 

(0)). When the system is allowed to evolve freely, the system propagator within the 

pure-dephasing approximation is given by  
0,1

( ) expm

m

m

U t ih t


   , where for 

brevity we set 1  throughout our treatment. In general (0) (0)

1 0
ˆ ˆ     ( (0)ˆ

m  

denoting the unit vector along (0)

mω ), so 0h and 1h  do not commute, that is, the 

conditional nuclear spin evolution represents precession about different axes, which 

suffices to generate universal nuclear spin operators. 

When the system is subjected to a series of centre spin  -pulses with timing 

intervals{ } { | 0,1, , }t t N     , the system propagator is given by 

0,1

{ } { }m

m

m

U t u t 


  , where 0 01 1

0{ } Nih t ih tih t
u t e e e



 
   with 0   or 1  for 

N  being even or odd, and 1u  is similarly defined. 
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Supplementary Methods 

Determination of 
0ω  and 1ω  

The conditional evolution of the nuclear qubit can be revealed by studying its 

free precession when the centre spin is prepared in different states. To be specific, we 

write  0 0 sin  cos     ω x z  and 1 1ω z , and denote the spin operators for the 

nuclear qubit by I  . Note that in this notation ˆx x  and ˆz z  in general. To 

incorporate the effect of incomplete polarization, we suppose the nuclear qubit is 

initially represented by the density matrix  . We further denote the polarization of 

the target spin right after the polarization procedure by  Tr( ) 1 2,1 2zI    . 

When a high degree of polarization is achieved, i.e. 1 2  , the off diagonal 

elements of   has magnitude 21
1

4
  , and so the contribution of the free 

precession signal due to the off-diagonal terms can be neglected. Therefore, the 

expectation value of 0 ( )zI t  as a function of free evolution time t  is given by  

 2 2

0 0( ) [cos cos( )sin ]. zI t t        (S7) 

Clearly the strength 0  is given by the frequency of the free precession signal. By 

comparing the corresponding signal with polarization along |  and | , the 

polarization  and the relative angle   can be measured.  

In Supplementary Fig. S1 we show the free precession signal when the magnetic 

field (fixed at 100 G) was orientated along different directions. Supplementary Figs. 

S1a-b show the scenario when B  was aligned at ~ 4  from the NV symmetry axis. 

The angle   was determined from the free precession signal in Supplementary Fig. 

S1b to be 55 . Supplementary Figs. S1c-d show the corresponding scenario when B  

was aligned at ~ 13  from the NV axis, which is the setting for the experimental 

results included in the main text. The symmetric oscillation about the common centre 

line of the precession signals indicates that   was tuned to be 90 . A similar set of 

procedures would also reveal information of 1ω  (Supplementary Figs. S1e-f). 

 

Numerical simulation of two-qubit gates 

Regarding the two coupled spin-1/2's as a 4-level system, the average fidelity F   

of executing a unitary gate G  by a system propagator { }U t  can be simplified by
43

  

  

† † †

† †

Tr( )

d  Tr ,
( 1)

j j

j

UO U GO G d

F U U G G
d d

    



 



   (S8) 

where 4d   and  jO  is a complete orthonormal operator basis for the 4-level 

system satisfying
†Tr( )j k jkO O  . The DD sequences have the symmetric forms 

0 1 1 0{ , , ,2 , , , }Nt t t t t   for 2N  pulses and 0 1 1 0{ , , , , , , , }N Nt t t t t t   for 2 1N   

pulses. 
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We adopted a numerical maximization protocol based on a scheme similar to the 

one described in the GRAPE algorithm
50

. Starting with an initial guess of 0{ }t , in 

each maximization step we update t t t     by tt F
    such that 0F  , 

where 0  is a small numerical parameter. t F


  can be calculated through the 

straightforward evaluation of t U


 , which requires only the knowledge of the 

inter-qubit interaction but not the detailed spectrum of the bath. 

As discussed in ref. 50, such an approach guarantees convergence only to local, 

but not global, maxima of F . Besides, given resources of N   -pulses it is desirable 

to also minimize t  such that the coherence is better protected and the gate speed 

is faster. Therefore, one has to choose an appropriate initial guess 
0{ }t  for a proper 

design of the DD gate sequence. In particular, we first surveyed a special subset of 

N -pulses sequences with the form mod( ,2)t t  , such that the parameter space is only 

two-dimensional. In addition, we restrict values of 0t  and 1t   such that the total 

gate operation time is reasonably short. The initial guess 0{ }t  is then determined by 

the values of 0t  and 1t  such that F  attains a global maximum over this restricted 

two-dimensional parameter space. The DD gate sequence DD{ }t  is then found by 

numerical optimization of F  in the larger parameter space. 

We present in Supplementary Table S1 a comprehensive list of the designed DD 

gate sequences discussed in Fig. 2 of the main text. 


