| Gene product                              | Gene name | Primer                | Sequence                     | Anneal.<br>Temp.  |
|-------------------------------------------|-----------|-----------------------|------------------------------|-------------------|
| Actin 9                                   | NtAct9    | NtAct2A               | CTATTCTCCGCTTTGGACTTGGC<br>A | 60 <sup>°</sup> C |
|                                           |           | NtAct2B               | AGGACCTCAGGACAACGGAAAC<br>G  |                   |
| Cytokinin<br>oxidase/<br>dehvdrogenase    | AtCKX1    | fCKX1-510             | CACCTTTGGCAATTCTACAT         | 60°C              |
| ,                                         |           | rCKX1-510             | TGTCCTTGAAGCGAGTGA           |                   |
| Dehydrin                                  | NtERD10B  | DehF2                 | ATGGACAAGGCGGAAGAAG          | 58° C             |
|                                           |           | DehR2                 | GTTGTTGCAGTTGAATGAGT         |                   |
| 1-pyrroline-5-<br>carboxylate<br>synthase | NtP5CS A  | Nt<br>P5CS_A_for1     | CTGGAGGCTCGAGTGTAAATG        | 60°C              |
|                                           |           | Nt<br>P5CS_A_rev<br>1 | TAGTTGTCCTGCCCTTGTCC         |                   |

Table S1. Primers used for quantitative real-time RT-PCR. Sequences start at the 5' end.

**Table S2.** The content of xanthophyll cycle pigments and DEPS during drought stress progression and subsequent recovery.

| Pigment | s [mg cm <sup>-2</sup> ] | Control          | 1 d drought      | 6 d drought      | 11 d<br>drought    | Recovery         |
|---------|--------------------------|------------------|------------------|------------------|--------------------|------------------|
| V+A+Z   | WT                       | $0.56 \pm 0.041$ | $0.73 \pm 0.064$ | $0.95{\pm}0.067$ | $1.06 \pm 0.079$   | $0.72 \pm 0.041$ |
|         | W6:CKX                   | $0.53{\pm}0.027$ | $0.71{\pm}0.081$ | $0.90{\pm}0.048$ | $1.10 \pm 0.082$   | $0.77 \pm 0.079$ |
|         | 35S:CKX                  | $0.63{\pm}0.033$ | $0.78{\pm}0.039$ | $0.91{\pm}0.081$ | $1.13 \pm 0.067$   | $0.84 \pm 0.036$ |
| DEPS    | WT                       | $0.23 \pm 0.011$ | $0.28 \pm 0.039$ | $0.36 \pm 0.011$ | $0.37 {\pm} 0.014$ | 0.26± 0.013      |
|         | W6:CKX                   | $0.24{\pm}0.022$ | $0.30 \pm 0.027$ | $0.37{\pm}0.017$ | $0.40 \pm 0.017$   | $0.23 \pm 0.012$ |
|         | 35S:CKX                  | $0.22 \pm 0.013$ | $0.26{\pm}0.012$ | $0.30{\pm}0.012$ | $0.35{\pm}0.018$   | $0.21 \pm 0.019$ |

Xanthophyll cycle pigments (V, violaxanthin; A, antheraxanthin; and Z, zeaxanthin) were determined in wild-type and *CKX1* transgenic tobacco plants. DEPS represents the ratio of deepoxidated xanthophyll cycle pigments to their total sum. WT, wild-type.

**Figure S1.** Photos of wild-type and *CKX1* transgenic tobacco plants under control (well-watered) conditions and after 10-day drought.

**Figure S2.** Content of cytokinin metabolites in leaves and roots of wild-type and *CKX1* transgenic tobacco plants. Control - control (hydrated) conditions; D - drought stress (10-d dehydration); D + HS – combined drought and heat stress (10 d dehydration + 40°C for 2 h), D recovery – 24 h recovery following rehydration; D+HS recovery – 24 h recovery after combined stress, 2 h HS - heat stress (40°C for 2 h); 6 h HS - heat stress (40°C for 6 h). Cytokinin metabolites were grouped according to their structure and function into 5 groups: P - cytokinin phosphates (*trans*-zeatin riboside-, isopentenyladenosine- and dihydrozeatin riboside phosphates), O-glc - cytokinin O-glucosides [*trans*-zeatin(riboside) O-glucoside and dihydrozeatin(riboside) O-glucoside], N-glc - cytokinin N-glucosides (7N- and 9N-glucosides of *trans*-zeatin, isopentenyladenine and dihydrozeatin), *cisZ*(MP,R) - *cis*-zeatin /riboside/phosphate, *cisZ* glc - *cisZ*-glucosides [*cis*-zeatin (riboside) O-glucoside and 7N- and 9N-glucoside]. WT, wild type. UL, upper leaves, LL, lower leaves, R, roots.

**Figure S3.** Transcript levels of the *P5CSA* gene in leaves and roots of wild-type and *CKX1* transgenic tobacco plants. Details for designation of individual variants are as described in Fig. 1. WT, wild-type.

**Figure S4.** Chlorophyll content of individual leaves of wild-type and *CKX1* transgenic tobacco plants under control (well-watered) conditions and after 6-day drought. The leaves were numbered from the bottom to the top. WT, wild-type.

**Figure S5.** Content of abscisic acid metabolites (phaseic acid, ABA-glucosylester, dihydrophaseic acid and neophaseic acid) in leaves and roots of wild-type and *CKX1* transgenic tobacco plants. Control - control (hydrated) conditions; D - drought stress (10-d dehydration); D + HS – combined drought and heat stress (10 d dehydration + 40°C for 2 h), D recovery – 24 h recovery following rehydration; D+HS recovery – 24 h recovery after combined stress, 2 h HS - heat stress (40°C for 2 h); 6 h HS - heat stress (40°C for 6 h). WT, wild type. UL, upper leaves, LL, lower leaves, R, roots.

**Figure S6**. Thermal images of tobacco wild-type and *CKX1* transgenic tobacco plants exposed 40°C. A - immediately after transfer to 40°C, B – after 10 min at 40°C, C - after 20 min at 40°C.



Figure S1



Figure S2



Figure S3



Figure S4



Figure S5







Figure S6