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Figure S1. Far-UV CD spectra of hFXN90-210, the monomeric (green line) and oligomeric 

(grey line) forms of variant hFXN56-210. The difference spectrum (oligomer minus 

monomer) is also shown (blue). As a control sample, hFXN90-210 was included (black 

line). All proteins were dissolved in 20 mM Tris-HCl buffer, pH 7.0, containing 100 mM 

NaCl and 1 mM EDTA. All spectra were acquired at 20 C. 
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Figure S2. GdmCl-induced unfolding transition of hFXN56-210 (A) and hFXN90-210 (B) 

variants followed by the change in the elution volume after SEC-FPLC. As in Figure S1, 

proteins were incubated for 16 h at the indicated GdmCl concentration. Afterwards, 

samples (100 µL) were injected into the SEC-FPLC system. The column was previously 

equilibrated at the same concentration of denaturant prepared in buffer 20 mM Tris-HCl, 

100 mM NaCl, 1 mM EDTA, pH 7.0. Flow rate was 0.2-0.4 mL/min, depending on the 

viscosity of the GdmCl solution. All measurements were performed at room temperature. 

(C) Size standards (thyroglobulin, 670 kDa; bovine  globulin, 150 kDa; chicken 

ovoalbumin, 44 kDa; equine myoglobin,17 kDa; vitB12, 1.35 kDa) were run in buffer 20 

mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, pH 7.0. The elution volume is plotted as a 

function of the log(RS) or as a function molecular weight (MW). The relation between RS 

and MW [1] is log(RS)=0.369×log(MW) -0.254.  
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Figure S3. GdmCl-induced unfolding transition of hFXN56-210 (A-C) and hFXN90-210 

(D) variants followed by changes in Trp fluorescence emission. Samples were incubated for 

16 h a room temperature. Fluorescence spectra (in the range 310–450 nm) were acquired 

using an excitation wavelength of 295 nm and a spectral slit–width set at 3 nm for both 

monochromators. Buffer was 20 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, pH 7.0. All 

measurements were performed at 20 C.  
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Figure S4. Comparison between unfolding curves corresponding to hFXN56-210 variant 

purified as the monomeric (m-hFXN56-210, ∆) or oligomeric forms (O-hFXN56-210, ○). 

Unfolding was followed by (A) far-UV CD at 220 nm and by (B) Trp fluorescence 

intensity. Buffer was 20 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, pH 7.0. All 

measurements were performed at 20 C. 
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MWTLGRRAVAGLLASPSPAQAQTLTRVPRPAELAPLCGRRSLRTGIDATCTPRRASSNLRGLNQIWNVKKQSVYLMNLRKSGTLGHPGSLDETTYERLAEETLDSLAEFFEDLADKPYTFEDYDVSFGSGVLTVKLGGDLGTYVINKQTPNKQIWLSSPSSGPKRYDWTGKNWVYSHDGVSLHELLAAELTKALKTKLDLSSLAYSGKDA   SEQ 

----HHHHHHHHH-----------------------------HHH-------------HHHHHHHHHHHH-EEEEEEEE--------------HHHHHHHHHHHHHHHHHHHH-----------------EEEEEE-----EEEEE------EEEEE---------------EEEE---EHHHHHHHHHHHHHHHHH------------- JPRED 

 

 

 

 

Figure S5. The sequence of hFXN (residues 1-210) and the tendency of N–terminal tail of hFXN 56–210 to form α-helical and  

structure according to Jpred are shown (A). MISP is the mitochondria import signal peptide. The sequence corresponding to peptide 

hFXN56-81 is highlighted in yellow. In addition, boxes corresponding to -helices, loops and β-strands are represented accordingly to 

PDBID: 1EKG in orange, green and blue, respectively. The C-terminal region (CTR) of hFXN is highlighted in red. Finally, the amino 

acid sequence 42-56 is highlighted in gray. Arrows in magenta represent points of processing during the import to the mitochondria 

(residues 42, and 81). Arrows in cyan indicate the N-terminal of hFXN56-210 and hFXN90-210, both studied in this work. In addition, 

the first and the last residues of the protein (1 and 210) are decorated with brown arrows. (B) The prediction of secondary structure 
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stability by AGADIR, pH 7.0, 100mM NaCl at 5 ºC. (C) The 3D structure of hFXN90–210 (PDB ID: 1EKG) represented in ribbons. 

Acidic residues involved in iron binding are denoted with the sign (-). 

 

List of sequences used for secondary structure prediction on the MSA of the N-terminal tail of FXN. 

gi|397508736|ref|XP_003824802.1| [Pan paniscus] 

gi|426361957|ref|XP_004048150.1| [Gorilla gorilla gorilla] 

gi|332249458|ref|XP_003273877.1| [Nomascus leucogenys] 

gi|402897579|ref|XP_003911830.1| [Papio anubis] 

gi|355753397|gb|EHH57443.1|   [Macaca fascicularis] 

gi|386781775|ref|NP_001247670.1|  [Macaca mulatta] 

gi|296189789|ref|XP_002742919.1|  [Callithrix jacchus] 

gi|332832118|ref|XP_001137864.2| [Pan troglodytes] 

gi|403301852|ref|XP_003941591.1|  [Saimiri boliviensis boliviensis] 

gi|395819437|ref|XP_003783094.1| [Otolemur garnettii] 

gi|472355878|ref|XP_004397585.1| [Odobenus rosmarus divergens] 

gi|431898667|gb|ELK07047.1|   [Pteropus alecto] 

gi|350579295|ref|XP_003480578.1|  [Sus scrofa] 

gi|338719548|ref|XP_001490501.3|  [Equus caballus] 

gi|512829179|ref|XP_004881608.1|   [Heterocephalus glaber] 

gi|344271243|ref|XP_003407450.1|  [Loxodonta africana] 

gi|158262735|ref|NP_001103428.1|  [Canis lupus familiaris]  

gi|507933632|ref|XP_004678052.1| [Condylura cristata] 

gi|440902536|gb|ELR53319.1|   [Bos grunniens mutus] 

gi|507538043|ref|XP_004653043.1| [Jaculus jaculus] 

gi|426220354|ref|XP_004004381.1| [Ovis aries] 

gi|410978095|ref|XP_003995432.1| [Felis catus] 

gi|466041703|ref|XP_004276467.1| [Orcinus orca] 

gi|444722414|gb|ELW63111.1|   [Tupaia chinensis] 

gi|511899504|ref|XP_004769299.1| [Mustela putorius furo] 

gi|470641967|ref|XP_004325704.1|  [Tursiops truncatus] 

gi|488525972|ref|XP_004454825.1|  [Dasypus novemcinctus] 

gi|505768208|ref|XP_004600382.1| [Sorex araneus] 

gi|300794591|ref|NP_001178881.1|  [Rattus norvegicus] 

gi|31077081|ref|NP_000135.2|   [Homo sapiens] 
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Figure S6. ANS fluorescence spectra of hFXN preparations. (A) Variant hFXN90-210 (5 

μM), isolated peptide hFXN56-81(50 μM), or a mixture of hFXN90-210 (5 μM) and 

peptide pFXN56-81A (50 μM) were mixed with ANS (50 μM). (B) hFXN56-210 purified 

as a monomer (grey dashed line) or as an oligomer (grey solid line) was incubated with 

ANS (50 μM). The spectrum of a mixture of variant hFXN90-210 and ANS is also shown. 

Buffer was 20 mM Tris-HCl, 100 mM NaCl, pH 7.0 and samples were incubated for 5 min 

at room temperature before measurements. The excitation wavelength was 350 nm.  
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Figure S7. Prediction of amyloid structure aggregation using PASTA on the hFXN56–81 

sequence. The hFXN sequence was submitted to the server PASTA (Prediction of amyloid 

structure aggregation, [2]). The aggregation profile (A) and pairing matrix plot (B) are 

shown. The former illustrates the aggregation probability for each position along the 

sequence. The latter represents a 2D self-alignment matrix where shades of grey indicate 

the probability for two residues to be part of a β -pairing. β-pairings known to appear in 

cross β-fibrillar aggregates generally yield PASTA energies  -4.0. 
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Figure S8. Co-evolution network analysis of mutual information on FXN sequences 

containing N-terminal extensions. Three networks (A, B and C) result from this analysis. 

Nodes are residues colored according to conservation across the MSA (from cyan to red, to 

indicate lower to higher conservation). Edges represent a significant MI relationship. 

Sequences containing N-terminal extensions (n=165) were selected from the global 

alignment of the CyaY family (n=948 sequences in PFAM). Mutual information and 

conservation scores were calculated as in references [3].  



 

11 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9. Prediction of intrinsically disordered segments along the sequence of hFXN 

using IUPRED [4]. Residues 66-75 share a lower tendency to form disordered regions, by 

comparison to residues 45-61 and 76-90. Predictions for both long or short disordered 

stretches were in general coincident.  
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Table S1. Prediction of amyloid structure aggregation using PASTA on the sequence of 

peptide hFXN56–81.  

Pairing PASTA Energy
1
 Length (in 

residues) 

Interaction 

between Segments 

Relative 

orientation 

(parallel or 

antiparallel) 

1 -4.888 14 65-78 and 65-78 parallel 

2 -4.775 4 65-68 and 65-68 parallel 

3 -4.677 17 62-78 and 62-78 parallel 

4 -4.564 7 62-68 and 62-68 parallel 

5 -4.113 13 65-77 and 65-77 parallel 

6 -3.989 6 73-78 and 73-78 parallel 

7 -3.967 12 65-76 and 65-76 parallel 

8 -3.902 16 62-77 and 62-77 parallel 

9 -3.902 16 63-78 and 63-78 parallel 

10 -3.884 11 65-75 and 65-75 parallel 
 

1
β-pairings known to appear in cross-β fibrillar aggregates generally yield PASTA energies 

 -4.0 [2].  
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