

## H3f3b

Δ









**Fig. S1. Design of H3.3 morpholinos and analysis of effects of H3.3 knockdown on gene expression.** (**A**) Sequences for morpholino oligos designed to target 5' UTR sequences of the *H3f3a and H3f3b* genes. Red ATG characters refer to the start codon. (**B**) The expression of diagnostic markers of ZGA is not altered in H3.3-deficient embryos. The expression level of *Erv4*, *Mt1* and *Eif1a* was analyzed in Ctrl MO- and H3.3 MO-treated two-cell embryos by qRT-PCR. Values were standardized to *Hprt* and compared with zygotes. All three genes are highly induced at the two-cell stage relative to the zygote in control and H3.3-deficient embryos, indicative of normal ZGA. (**C**) The expression of genes involved in lineage commitment at the morula stage is not significantly altered in H3.3-deficient embryos. The expression level of markers of ICM/epiblast (*Oct4*, *Sox2*, *Nanog*, *Klf2*), primitive endoderm (*Gata*6) and throphectoderm (*Cdx2*) was analyzed in H3.3 MO-treated embryos at the morula stage by qRT-PCR. Values were normalized to *Hprt* and compared with Ctrl MO embryos. Gene expression differences are minor at best (less than twofold) and not always consistent between different embryo batches (data not shown). (**D**) Oct4 and Cdx2 are normally expressed in H3.3 MO embryos. Immunofluorescence of Cdx2 (green) and Oct4 (red) in Ctrl MO and H3.3MOs morulae. Scale bar: 20 µm. Error bars indicate s.d.



Fig. S2. Analysis of additional histone marks in H3.3-deficient embryos. Immunofluorescence images of H3K9me2, H3K9me3, H3K27me3, HP1 $\beta$  and H3K4me3 in Ctrl MO- and H3.3 MO-treated embryos at the two-cell stage. Scale bar: 20  $\mu$ m.







**Fig. S3. H4 acetylation loss in H3.3-deficient embryos is restricted to H4K16.** (**A**) The expression of enzymes involved in imposing or removing H4K16ac and H3K36me2 is not significantly altered in H3.3-deficient embryos. The expression level of H4 acetyltransferases (*Ep300* and *Ncoa1*), an H4K16-specific acetyltransferase (*Mof*), H4 deacetylases (*Hdac1* and *Hdac2*), H3K36-specific methyltransferase (*Setd3*) and H3K36- specific demethylases (*Kdm2a* and *Kdm8*) was analyzed in H3.3 MO-treated two-cell embryos by qRT-PCR. Values were standardized to *Hprt* and compared with Ctrl MO embryos. (**B**) Schematic of the H4 tail with lysines capable of undergoing acetylation and the antibodies that recognize them indicated. The pan-H4ac antibody can recognize all four acetyl-lysine sites; the H4K5/8/12ac antibody can recognize all sites except K16; and the H4K16ac antibody is specific to K16. (**C**) No significant changes in H4 acetylation are detected in H3.3-deficient embryos outside of the K16 residue. Immunofluorescence (upper panel) and quantification (lower panel) of H3.3 (green) and H4K5/8/12ac (red) in Ctrl MO and H3.3 MO embryos at the two-cell stage. Scale bar: 20 µm. (**D**) A pan-H4 acetylation antibody shows a significant decrease in staining in H3.3-deficient embryos. Immunofluorescence (upper panel) and quantification (lower panel) of H3.3 (green) and pan-H4ac (red) in Ctrl MO and H3.3 MO embryos at the two-cell stage. Scale bar: 20 µm. (**D**) A pan-H4 acetylation antibody shows a significant decrease in staining in H3.3-deficient embryos. Immunofluorescence (upper panel) and guantification (lower panel) of H3.3 (green) and pan-H4ac (red) in Ctrl MO and H3.3 MO embryos at the two-cell stage. Scale bar: 20 µm. (**D**) A pan-H4 acetylation antibody shows a significant decrease in staining in H3.3-deficient embryos. Immunofluorescence (upper panel) and guantification (lower panel) of H3.3 (green) and pan-H4ac (red) in Ctrl MO and H3.3 MO embryos at the two-cell stage. Scale bar: 20 µm. Error bars indicate

H1a ACAGCCGCATCAAACTGGGGCTGAAAAGCCTGGTGAATAAAGGCACACTGGTGCAGACCA H1b ACAGCCGCATCAAGCTTGGGCTCAAGAGTCTGGTGAGCAAGGGTACCCTGGTGCAGACCA H1c ACAGCCGCATCAAGCTCGGCCTGAAGAGCCTGGTGAGCAAGGGCATCCTGGTGCAGACCA H1d ACAGCCGCATCAAGCTCGGGCTGAAGAGCCTGGTGAGCAAGGGTACCCTGGTGCAGACCA H1e ACAGCCGCATCAAGCTCGGCCTGAAGAGCCTGGTGAGCAAGGGTACCCTGGTGCAGACCA H1e ACAGCCGCATCAAGCTCGGCCTGAAGAGCCTGGTGAGCAAGGGTACCCTGGTGCAGACCA



R



**Fig. S4. Design and validation of the H1 siRNA used for rescue of H3.3-deficient embryos.** (**A**) Alignment of H1 isotypes and design of pan-H1 siRNA. Multiple sequence alignment was carried out using Clustal Omega (European Bioformatics Institute). The region highlighted in yellow indicates a sequence identical among all five H1 isotypes, and the blue line indicates the H1 siRNA designed and used in this manuscript. (**B**) Validation of H1 mRNA knockdown upon siRNA treatment. The expression level of the five H1 isotypes was analyzed in H1 siRNA (0.5 and 2  $\mu$ M)-injected two-cell embryos by qRT-PCR. Values were standardized to *H2A.1* and compared with NT siRNA (0.5  $\mu$ M)-injected two-cell embryos. (**C**) Validation of H1 protein knockdown upon siRNA treatment. Immunofluorescence (left panel) and quantification (right panel) of H1 (green) and H3.3 (red) in Uninj. and H1 siRNA (0.5 and 2  $\mu$ M) embryos at the two-cell stage. Scale bar: 20  $\mu$ m. Error bars indicate s.d.



**Fig. S5. The micronuclei phenotype in H3.3-deficient embryos can be rescued by H1 knockdown.** Left panel: Representative DNA (DAPI) images of two-cell embryos injected at the zygote stage with Ctrl MO, H3.3 MOs plus NT siRNA, H3.3 MOs plus H1 siRNA, or H3.3 MOs plus H3.3-GFP mRNA. Arrow indicates micronucleus. Scale bar: 20 µm. Right panel: Quantification of incidence of micronuclei in two-cell embryos injected at the zygote stage with Ctrl MO, H3.3 MOs plus NT siRNA, H3.3 MOs plus H1 siRNA, or H3.3 MOs plus H3.3-GFP mRNA.



**Fig. S6. Validation of Mof and H4K16ac knockdown upon Mof siRNA treatment.** Immunofluorescence of Mof (green) and H4K16ac (red) in NT siRNA- and Mof siRNA-injected embryos at the four-cell stage. Scale bar: 20 µm.

| Gene  | Forward (5'-3')              | Reverse (5'-3')                |
|-------|------------------------------|--------------------------------|
| H2A.1 | ACATGGCGGCGGTGCTGGAGTA       | CGGGATGATGCGCGTCTTCTTGTT       |
| Hprt  | GCTTGCTGGTGAAAAGGACCTCTCGAAG | CCCTGAAGTACTCATTATAGTCAAGGGCAT |
| Erv   | ACATGAACAAAGTGGCCATGGTGG     | AGTGTTGGTTTCTGCTGTTGGCAG       |
| Mtl   | TCCTGCAAGAAGAGTGAGTTGGGA     | AGACAATACAATGGCCTCCGGGAA       |
| Eifla | CAACACTGTTTGCTGCCTGTGGAT     | ACAGCAGCTGAGACTCCTTTCCAA       |
| Sox2  | AGCCTCCAGCAGATGCAAGA         | GCACTTCATCCTTTGGTTTTGAA        |
| Oct4  | AGCCGACAACAATGAGAACC         | TGGTCTCCAGACTCCACCTC           |
| Nanog | GCTCAGCACCAGTGGAGTATCC       | TCCAGATGCGTTCACCAGATAG         |
| Klf2  | CACCAAGAGCTCGCACCTAA         | TTTCGGTAGTGGCGGGTAAG           |
| Gata6 | TTAACACTGATTGCTGCAACG        | GTTCATCGTAACGTGGCTGA           |
| Cdx2  | CCTGCGACAAGGGCTTGTTTAG       | TCCCGACTTCCCTTCACCATAC         |
| Ер300 | GTTGCTATGGGAAACAGTTATGC      | TGTAGTTTGAGGTTGGGAAGG          |
| Ncoal | AGGAGTGATAGAGAAGGAGTCG       | TGATTGTAACCCAAGTAGCTGG         |
| Mof   | ACCTCAAAAGTGCCCAGTATAAG      | AAACCCAGATCCCAAGCAG            |
| Hdac1 | GAGATGACCAAGTACCACAGTG       | AAACAAGCCATCAAACACCG           |
| Hdac2 | TGACAAACCAGAACACTCCAG        | TCTCCATCCTCATCTCCACTG          |
| Kdm2a | AAGCCCGACGCATGAACAATAAGC     | TGCCAAGTCCATCGTAATCCAGGT       |
| Kdm8  | TGCACACACCTTACTCAGGGTGAA     | TTCAGCCAATGAGCTTCCCTTCCT       |
| Setd3 | AAGTGACAGGCTCTACGCCATGAA     | AGTCTCTTTCAGCTCCTCTTCGGT       |
| Hla   | CATCACCACCAAGGTGTCAG         | TTGGAAACTGCAGGCTTCTT           |
| Hlb   | GTAGAGAAGTCTCCCGCCAAG        | CCTTAGTGATGAGCTCGGACA          |
| Hlc   | AAGGTCAAGAGCGCGTCTAA         | GGGAGGCAGCCTACTTTTTC           |
| Hld   | ACGGCCAAGAAGACTCCGAAGAA      | TGGGCTTAGCAGCCTTCACCTTC        |
| Hle   | AGCTAAGAGCCCGAAGAAGG         | AGGCTTGGAGGTTTTTGGTT           |

Table S1. Primers used for quantitative RT-PCR