

Fig. S1. Mutational analysis identified crucial bases for P7eNPBE enhancer activity. (A) A mutational analysis was performed to determine which binding sites are crucial for the enhancer activity of P7eNPBE. (B-I') Embryos were co-electroporated with wild-type P7eNPBE driving mCherry and mutated P7eNPBE (termed mP7eNPBE) driving EGFP to directly compare wild type with mutated enhancer activity in the same embryo. (B-C') The first type of mutation completely eliminated the activity of P7eNPBE at all stages screened. Although the wild-type enhancer (red) is expressed in the neural plate and neural plate border at HH8 (B) and HH9 (C), the mutated enhancers (green) are not expressed (B',C', arrows). (**D-E**') The second type of mutation retains the spatiotemporal enhancer activity, but is generally expressed less brightly or in fewer cells. The wild-type enhancer (red) is robustly expressed in the neural plate and neural plate border at HH6 (D) and HH8 (E). The mutated enhancer (green) is also expressed in the neural plate and neural plate border (D', E', arrowheads), but often there are many cells not expressing the enhancer as robustly or even at all (D', arrow). (F-I') The remaining two types of mutations had stage-specific effects, with the mutated enhancers only expressed either before HH8 (F-G') or after HH8 (H-I'). (F-G') The wild-type (red) and mutated (green) enhancers are expressed at HH4 (F,F') surrounding Hensen's node and in the primitive streak (arrowheads). But while the wild-type enhancer expression continues in the neural folds, neural plate and neural plate border at HH9 (G), the mutated enhancers are not expressed (G', arrows). (H-I') The final type of mutation is expressed only after HH8. The wild-type enhancer (red) is expressed in the neural plate border at HH6 (H) but the mutated enhancer (green) is not (H', arrows). However, at HH9, both forms are expressed in the neural folds and neural plate border (I,I', arrowheads). Hn, Hensen's node; np, neural plate; npb, neural plate border; nne, non-neural ectoderm; nf, neural folds; ps, primitive streak.

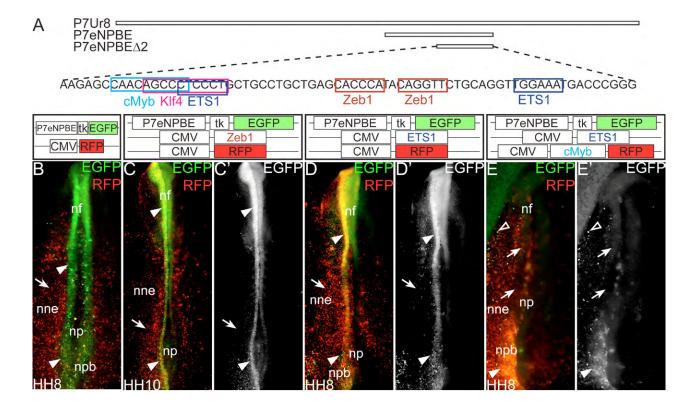


Fig. S2. Zeb1 and ETS1 are not sufficient to alter the enhancer activity of P7NCE. (A) Position size and sequence of the enhancer P7eNPBEΔ2 in comparison with the P7Ur8 and the P7eNPBE. Boxes in sequence from A indicate putative transcription factor-binding sites modulating enhancer activity, and include cMyb (light blue box), Klf4 (pink box), ETS1 (dark blue boxes) and Zeb1 (red boxes). (B-E') These transcription factors were overexpressed by electroporation to assess possible effect on P7eNPBE enhancer activity. (B) At HH8, P7eNPBE (green) is normally robustly expressed in the neural plate and neural plate border (arrowheads) and is restricted from the non-neural ectoderm (arrows). (C-D') Ectopic expression of either Zeb1 (C,C', red) or ETS1 (D,D', red) does not alter the normal expression of P7eNPBE (green), which is still present in the neural plate and neural plate border (arrowheads), and is restricted from the non-neural ectoderm (arrows). (E,E') At HH8, when ETS1 and cMyb (red) are ectopically expressed together, P7eNPBE (green) expression is no longer restricted from the non-neural ectoderm (open arrowhead) and is in a 'salt and pepper' pattern. Although some cells in the neural plate and neural folds still express P7eNPBE (closed arrowhead), there are many cells that do not (arrows). np, neural plate; npb, neural plate border; nne, non-neural ectoderm; nf, neural folds.

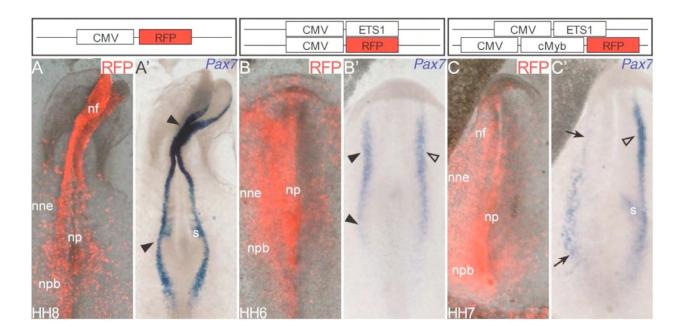


Fig. S3. Ectopic expression of ETS1 does not alter Pax7 mRNA expression. (A-C') Empty vector control (A,A'), ETS1 (B,B') or ETS1 and cMyb (C,C') were ectopically expressed in embryos, which were subsequently stained for Pax7 mRNA by in situ hybridization. (A,A') At HH8, embryos misexpressing the control express Pax7 (blue) in the neural folds and somites (closed arrowheads) as normal. (B,B') At HH6, embryos misexpressing ETS1 display normal Pax7 mRNA expression (blue) in the electroporated neural fold (closed arrowheads) when compared with the untreated neural fold (open arrowhead). (C,C') At HH7, embryos treated with both ETS1 and cMyb show reduced levels of Pax7 mRNA (blue) in the electroporated neural fold (arrows) and in the first forming somite (double arrowhead) compared with the untreated side (open arrowheads). The expression is not expanded into the neural plate or non-neural ectoderm. np, neural plate; npb, neural plate border; nne, non-neural ectoderm; nf, neural folds; s, somites.

Table S1. Summary of binding sites affected by mutagenesis

Mutation	1	2	3	4	5	6	7	8
*****1.1.								
Wild type	GAGCCA	ACAGCC	TCCCTGC	TGCCTG	GAGCAC	CCATAC	AGGTTCT	TTGGAAA
sequence								
Mutated	TCTAAC	CACTAA	GAAAGTA	GTAAGT	TCTACA	AACGCA	CTTGGAG	GGTTCCC
sequence	2022	0.10 1.11		0	20222	11100011		
Activity	+	-	-	+/_	+/_	+/_	+/_	-
	(weak)			(+ before	(+ before	(+ before	(+ after	
				НН8)	HH8)	НН8)	HH8)	
Sites	FOXA1	FOXA1	Klf4	SP1	INSM1	INSM1	Zeb1	BRCA1
deleted or	NFIC	TFAP2A	ETS1	BRCA1	Arnt::Ahr	MZF1_5_13	SPIB	СЕВРА
moved	1,110		5151	210111			5112	023111
	TFAP2A	BRCA1	BRCA1	Mfab	Zeb1	Arnt::Ahr		ELF5
	BRCA1	Mafb	Mafb	Arnt::Ahr		Zeb1		ETS1
	Mafb	Myb				YY1		NFIC
	Myb	BRCA1				GATA2		HoxA5
		Klf4				FOXC1		NFATC2
								REL
								REL
Sites added	GATA2	RUNX1	ELK1	FOXc1	ZNF354C	RUNX1	EBF1	ESR1
	DDC+1	7NE254C	DI 124	1.701	FOXC1	Б. 4	111.0	г.
	BRCA1	ZNF354C	ELK1	AP1	TOACI	En1	Hltf	En1

GATA3	SOX10	E2F1	Arnt::Ahr	FOXL1	BRCA1	Zeb1	ESR2
RUNX1	HoxA5	TFAP2	SPIB	Zeb1	SOX10	TFAP2A	NFKB1
SOX10	GATA3	FEV	NKX3-1		Zfp423	NFIC	ETS1
	Pdx1	FOXC1			Zfp423	ZNF354C	
	ELF5	SP1			Arnt::Ahr	Znf143	
	FEV	NKX3-1			Hltf		
	SPI1	Prx2			ETS1		
		FOXL1			Nr2e3		
		GATA2			Nr2e3		

Sequence blocks of 6-7 bp were mutated in the enhancer P7eNPBE to determine the critical bases for enhancer activity. Putative binding sites were identified in wild-type and mutated forms of the enhancer using JASPAR (Bryne et al., 2008). All mutated forms of P7eNPBE modulated the activity, and all of them eliminated several overlapping binding sites while adding several new sites.

Table S2. Primers for Pax7 upstream regions (putative enhancer regions)

Region	Primers (5'-3')
P7Ur1	GAGCGGTACCCTCTGAGCATTTCCACC
	GAGCCTCGAGTCACAACTTATTTCTCGGCG
P7Ur2	GAGCGGTACCCCTCTGAGCATTTCCACCC
	GAGCCTCGAGGAGCAGCATGGAAAATAGCC
D71 1 ₂ 2	GAGCGGTACCATTTCCAGTTCCCATTCTGC
P7Ur3	GAGCCTCGAGACGTCCAAAGCAACTCTTCG
P7Ur4	GAGCGGTACCAGAGAAGGAAACCTCTCCCC
	GAGCCTCGAGGGACAAATCCTATCTGTAAGACGC
P7Ur5	GAGCGGTACCTGATGACCAAAACTGGGAGC
P/013	GAGCCTCGAGCAATAATCACTGCTGCTTGGG
P7Ur6	GAGCGGTACCTAACCATGTCCCTCAGTGCC
P/010	GAGCCTCGAGCACTTGGTTGTAGGAATGGG
P7Ur7	GAGCGGTACCCACCGAGTTTCACGTTAGGG
P/UI/	GAGCCTCGAGGGAGGTTGCTACAATGAGGG
P7Ur8	GAGCGGTACCGCACAGAAAGGCAATAACCC
17018	GAGCCTCGAGAAAGCAACTATAAAACCCCGC
P7Ur9	GAGCGGTACCTTTTAGCAGTGTGTTTTGCGG
P/UI9	GAGCCTCGAGGACAGGGAAACACACCCAAC
P7Ur10	GAGCGGTACCGTTGTGTTCCATCACCTCCC
	GAGCCTCGAGGTTGGGTGAAAACACTTGCC
P7Ur11	GAGCGGTACCAAGGAAGAGGAAATGCAGGG
	GAGCCTCGAGTATTTCAGAGGGACTTCCGC
P7Ur12	GAGCGGTACCGAAGGAGCTCTCAAACACCG
	GAGCCTCGAGAATCACCCATACTTTCCCCC

Table S3. Primers used to generate deletions and smaller constructs from P7Ur8

Region	Primers (5'-3')
P7Ur8Δ1	AACATTTTCCCTCTTCTTCCCCTGTGCT
	AGCACAGGGAAGAAGAGGGAAAAATGTTT
P7Ur8Δ2	CCTCTCCCATTGGGGCCATCTGGGTTTTGG
	CCAAAACCCAGATGGCCCCAATGGGAGAGG
D711-0 4 2	TTTAACCTTTTCTTCGGCAGTTAGAAGGCA
P7Ur8∆3	TGCCTTCTAACTGCCGAAGAAAAGGTTAAA
D71 I=0 A 4	CCAAAATTTCCATCTCAGGAGAGACGGAAC
P7Ur8∆4	GTTCCGTCTCTCTGAGATGGAAATTTTGG
P7Ur8Δ5	ATTGCAACGTGGCAGAGAGGATGAAAAGAG
Ρ/018Δ3	CTCTTTTCATCCTCTCTGCCACGTTGCAAT
D71 I=0 A C	TGAATCTCACACAGGACAGGTTCTGCAGGT
P7Ur8∆6	ACCTGCAGAACCTGTCCTGTGTGAGATTCA
P7Ur8Δ7	CACAAAAAGCAGAGGGAAACTCAACTCAAA
Ρ/018Δ/	TTTGAGTTGAGTTTCCCTCTGCTTTTTGTG
P7Ur8Δ8	GGAGAGCTCTGCTCGGACGAGTCCTAAGC
Ρ/018Δ8	GCTTAGGACTCGTCCGAGCAGAGCTCTTCC
P7Ur8Δ9	GAGCGGTACCGCACAGAAAGGCAATAACCC
Ρ/018Δ9	CTCAGAGCTCTGTGTGAGATTCACTGAT
	CTCAGAGCTCTGTGTGAGATTCACTGAT
P7Ur8∆9G	CTGAGAGCTCTCGACTTCAAGGAGGACG
	CTGAGAGCTCTCCTCGATGTTGTGGCGGATCTTGAA
P7eNPBE	GACTGGTACCTTCATCCTCTGCTTTTTGTG
r /enrde	GTAGCTCGAGTCACACAGGTCCAGGAGAGA
P7eNPBED1	GTAGCTCGAGTCACACAGGTCCAGGAGAGA
1 /CINEDEDI	ATTACCCGGGAGGTCCAGGAGAGACGGA
P7eNPBED2	ATTACDCCGGGAGCCAACAGCCCTCC
F/CNFDED2	GTAGCTCGAGTCACACAGGTCCAGGAGAGA

Primer pairs designed to generate and clone specific deletions (Δ) of Pax7 upstream

region 8 (P7Ur8), as well as the smaller elements derived from it.

Table S4. Mutagenesis analysis of P7eNPBE

Region	Primers (5'-3')
M1	GCTCAGCAGGCAGGGAGGGCTGTGTTAGATTTTCATCCTCTGCTTTTTGTGATGC GCATCACAAAAAGCAGAGGATGAAAATCTAACACAGCCCTCCCT
M2	GGGTGCTCAGCAGGCAGCAGGGAGTTAGTGTGGCTCTTTTCATCCTCTGCTTTT AAAAGCAGAGGATGAAAAGAGCCACACTAACTCCCTGCTGCCTGAGCACCC
M3	GCAGAACCTGTATGGGTGCTCAGCAGGCA <mark>TACTTTC</mark> GGGCTGTTGGCTCTTTTCATCC GGATGAAAAGAGCCAACAGCCC <mark>GAAAGTA</mark> TGCCTGCTGAGCACCCATACAGGTTCTGC
M4	GCAGAACCTGTATGGGTGCTCAG <mark>ACTTAC</mark> GCAGGGAGGGCTGTTGGCTCTTT AAAGAGCCAACAGCCCTCCCTGC <mark>GTAAGT</mark> CTGAGCACCCATACAGGTTCTGC
M5	CCAAACCTGCAGAACCTGTATGGTGTAGAAGCAGGCAGCAGGGAGGG
M6	TCGTTTCCAAACCTGCAGAACCTTGCGTTGTGCTCAGCAGGCAG
M7	AGCCCGGGTCGTTTCCAAACCTGCCTCCAAGGTATGGGTGCTCAGCAGGCAG
M8	TCTTACGCGTGCTAGCCCGGGGTCGGGGAACCACCTGCAGAACCTGTATGGGTGCT AGCACCCATACAGGTTCTGCAGGTGGTTCCCCGACCCGGGCTAGCACGCGTAAGA

Mutations (red sequence) consisting of changes in groups of 6 to 7 bp at a time

introduced in the P7eNPBE.

Table S5. Primers used to generate overexpression constructs

Clone	Primers (5'-3')
Klf4	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGCCGCCATGGCTGTCAGCGACGCG GGGGACCACTTTGTACAAGAAAGCTGGGTAAAAATGCCTCTTCATGTG
Zeb1	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGCCGCCATGGCGGATGGCCCCAGGTGTAA GGGGACCACTTTGTACAAGAAAGCTGGGTAGGCTTCATTTGTCTTTTC
DN- cMyb	GCGCTCTAGAAATGGGCCGGAGACCC CTTACCCGGGTTAGGAATTCCAGTGGTTCTT