Modularity of select riboswitch expression platform enables facile engineering of novel genetic regulatory devices

Supporting Information

Pablo Ceres, Andrew D. Garst, Joan G. Marcano-Velázquez, and Robert T. Batey*

Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 596, Boulder, Colorado 80309-0596

*Corresponding Author: Tel: (303)-735-2159 Fax: (303)-492-5894 Email: <u>robert.batey@colorado.edu</u>

SUPPLEMENTARY FIGURES

Supplementary Figure 1. Continued on the next page.

Supplementary Figure 1, continued. Sequence and secondary structure of (a) the *Bacillus subtilis metE* SAM-I, (b) *yitJ* SAM-I (b) the *IysC* lysine riboswitches used in this study. Nucleotides directly involved in ligand binding (green) are denoted by cyan rectangles. Sequence involved in formation of alternative secondary structures (P-T, intrinsic terminator; P-AT, antiterminator) are denoted with orange and yellow boxes. The boundary between the two domains as considered in this study to create chimeras is denoted by a dashed line.

Supplementary Figure 2. Sequence and secondary structure of the chimera between the *B. subtilis xpt-pbuX* guanine riboswitch aptamer domain and the *B. subtilis metE* SAM-I riboswitch expression platform.

Supplementary Figure 3. Comparison of the T_{50} of each wild type or chimeric riboswitch determined by the in vitro transcription assay and the K_D of the aptamer domain as measured by ITC. The solid line represents the linear fit to all of the data whereas the dashed line is the fit to all the data except for the point that has the largest variance. While riboswitches containing the *metE* (a) and *lysC* (b) expression platforms show a strong correlation between T_{50} and K_D , that of *yitJ* is very weak (as judged from

the r² of the fit).

Supplementary Figure 4. Lysine-dependent transcriptional termination of the *B. subtilis lysC* lysine riboswitch as a function of the length of the P1 helix. Point mutations were introduced into the 5'-side of the P1 helix to either disrupt Watson-Crick pairs (P1(-1), P1(-2)) or introduced additional pairs (P1(+1), P1(+2), P1(+3)) (see sequence in Supplementary Table 1). Transcription reactions were performed in the absence (-) or presence (+) of lysine. For each RNA, the percent termination in the absence and presence (1mM) of the ligand are given as the average of three independent experiments.

Supplementary Figure 5. Map of the parental riboswitch reporter plasmid (pRR1). The plasmid is derived from pBR322, from which the tetracycline resistance gene was removed and replaced with a gene encoding GFPuv (green) under control of a constitutively expressed *tac* promoter (yellow). The sequence immediately upstream of the *tac* promoter is an "insulator" sequence preceded by a strong *rrnB* T₁T₂ terminator (red). All riboswitch leader sequences (orange) were cloned between the *Nsi*I and *Hind*III sites. The sequence of the full plasmid is given in Supplementary Table 2.

Supplementary Figure 6. Raw normalized fluorescence data for graphs shown in Figure 5b, d. (a) Raw normalized data for titration of the *xpt*(C74U)/*metE* (green) and *xpt*(C74U,U51C)/*metE* (blue) reporter with 2-aminopurine in the defined growth medium. Red bars represent the background fluorescence as measured using the parental pBR322 plasmid with no GFPuv reporter. Note that while the U51C negative control displays a ~2-fold increase in total fluorescence at high 2-AP concentrations, this transition occurs at higher 2-AP concentrations that the repression of the reporter. (b) Raw normalized data for titration of the *theo/metE* (green) and *theo*(U24A)/*metE* (blue) reporters with theophylline in the defined growth medium. Red bars represent the pBR322 background control. Error bars represent the standard deviation of at least 3 independent measurements.

Name	Sequence ¹
<i>lvsC</i> expression	•
platform chimeras	
lysC wild type	AATTTCATAGTTAGATCGTGTTATATGGTGAAGATA <mark>GAGGTGCGAACT</mark>
iyse who type	TCAAGAGTATGCCTTTGGAGAAAGATGGATTCTGTGAAAAAGGCTGAA
	AGGGGAGCGTCGCCGAAGCAAATAAAACCCCCATCGGTATTATTTGCTG
	GCCGTGCATTGAATAAATGTAAGGCTGTCAAGAAATCATTTTCTTGGA
	GGGC TATCTCGTTGTTCATAATCATTTATGATGATTAATTGATAAGCA
	ATGAGAGTATTCCTCTCATTGCTTTTTTTATTGTGGACAAAGCGCTCT
	TTCTCCTCACCCGCACGAACCAAAATGTAAAGGGTGGTAATACATG
lvsC (P1-3)	AATTTCATAGTTAGATCGTGTTATATGGTGATCTTA <mark>GAGGTGCGAACT</mark>
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TCAAGAGTATGCCTTTGGAGAAAGATGGATTCTGTGAAAAAGGCTGAA
	AGGGGAGCGTCGCCGAAGCAAATAAAACCCCATCGGTATTATTTGCTG
	GCCGTGCATTGAATAAATGTAAGGCTGTCAAGAAATCATTTTCTTGGA
	GGGCTATCTCGTTGTTCATAATCATTTATGATGATTAATTGATAAGCA
	ATGAGAGTATTCCTCTCATTGCTTTTTTTTATTGTGGACAAAGCGCTCT
	TTCTCCTCACCCGCACGAACCAAAATGTAAAGGGTGGTAATAC <mark>ATG</mark>
/vsC (P1-2)	AATTTCATAGTTAGATCGTGTTATATGGTGATCATA <mark>GAGGTGCGAACT</mark>
,	TCAAGAGTATGCCTTTGGAGAAAGATGGATTCTGTGAAAAAGGCTGAA
	AGGGGAGCGTCGCCGAAGCAAATAAAACCCCATCGGTATTATTTGCTG
	GCCGTGCATTGAATAAATGTAAGGCTGTCAAGAAATCATTTTCTTGGA
	GGGC TATCTCGTTGTTCATAATCATTTATGATGATTAATTGATAAGCA
	ATGAGAGTATTCCTCTCATTGCTTTTTTTTATTGTGGACAAAGCGCTCT
	TTCTCCTCACCCGCACGAACCAAAATGTAAAGGGTGGTAATAC <mark>ATG</mark>
<i>lysC</i> (P1-1)	AATTTCATAGTTAGATCGTGTTATATGGTGATGATA <mark>GAGGTGCGAACT</mark>
	TCAAGAGTATGCCTTTGGAGAAAGATGGATTCTGTGAAAAAGGCTGAA
	AGGGGAGCGTCGCCGAAGCAAATAAAACCCCATCGGTATTATTTGCTG
	GCCGTGCATTGAATAAATGTAAGGCTGTCAAGAAATCATTTTCTTGGA
	GGGC TATCTCGTTGTTCATAATCATTTATGATGATTAATTGATAAGCA
	ATGAGAGTATTCCTCTCATTGCTTTTTTTATTGTGGACAAAGCGCTCT
	TTCTCCTCACCCGCACGAACCAAAATGTAAAGGGTGGTAATAC <mark>ATG</mark>
<i>lysC</i> (P1+1)	AATTTCATAGTTAGATCGTGTTATATGGTGGAGATAGAGGTGCGAACT
	GGGCIAICICGIIGIICAIAAICAIIIAIGAIGAIIAAIIGAIAAGCA
$h = C \left(D_{1} \cdot 0 \right)$	
iysc(PT+2)	TCAACACTATCCCTTTCCACACATCCATCTCTCACAAAAAA
	CCCCTCCATTCAATAAACCAAATAAACCCCCATCOGTATTATTTCCTCCA
	CCCCTATCTCCTTCTTCATATCATCATCATCATCATCATC
	ATCACACTATTCCTCTCATTCCTTTTTTTTTTTTTTTTT
	TTCTCCTCACCCGCACGAACCAAAATGTAAAGGGTGGTAATACATG
lvsC(P1+3)	AATTTCATAGTTAGATCGTGTTATATGGACGAGATA <mark>GAGGTGCGAACT</mark>
//30 (1 1+3)	TCAAGAGTATGCCTTTGGAGAAAGATGGATTCTGTGAAAAAGGCTGAA
	AGGGGAGCGTCGCCGAAGCAAATAAAACCCCCATCGGTATTATTTGCTG
	GCCGTGCATTGAATAAATGTAAGGCTGTCAAGAAATCATTTTCTTGGA
	GGGC TATCTCGTTGTTCATAATCATTTATGATGATTAATTGATAAGCA
	ATGAGAGTATTCCTCTCATTGCTTTTTTTTTTTTTGTGGACAAAGCGCTCT
	TTCTCCTCACCCGCACGAACCAAAATGTAAAGGGTGGTAATACATG

Supplementary Table 1: Sequences of riboswitches and chimeras used in this study.

metE/lvsC	AATTTCATAGTTAGATCGTGTTATATGGTGAAGATA <mark>ATCGAGAGTTGG</mark>
meiL/iy30	
	GGCACGGTGCTAATTCCATCAGATTGTGTCTGAGAGATTATCTCGTTG
	TTCATAATCATTTATGATGATTAATTGATAAGCAATGAGAGTATTCCT
	CTCATTGCTTTTTTTTATTGTGGACAAAGCGCTCTTTCTCCTCACCCGC
	ACGAACCAAAATGTAAAGGGTGGTAATAC <mark>ATG</mark>
vitJ/lvsC	AATTTCATAGTTAGATCGTGTTATATGGTGAAGATA <mark>TCAAGAGAAGCA</mark>
y y	GAGGGACTGGCCCGACGAAGCTTCAGCAACCGGTGTAATGGCGATCAG
	CCATGACCAAGGTGCTAAATCCAGCAAGCTCGAACAGCTTGGAAGA
	TCTCGTTGTTCATAATCATTTATGATGATTAATTGATAAGCAATGAGA
viet/luce	
xpt/lysC	
	GGATATGGCACGCAAGTTTCTACCGGGCACCGTAAATGTCCGACTATT
	ATCTCGTTGTTCATAATCATTTATGATGATTAATTGATAAGCAATGAG
	AGTATTCCTCTCATTGCTTTTTTTATTGTGGACAAAGCGCTCTTTCTC
	CTCACCCGCACGAACCAAAATGTAAAGGGTGGTAATAC <mark>ATG</mark>
xpt(C74U)/lvsC	AATTTCATAGTTAGATCGTGTTATATGGTGAAGATA <mark>ATATAATCGCGT</mark>
	GGATATGGCACGCAAGTTTCTACCGGGCACCGTAAATGTCCGA <mark>T</mark> TAT <mark>T</mark>
	ΑΤΥΥΥΥΤΩΤΤΩΤΑΑΤΥΑΤΤΑΤΩΑΤΩΑΤΤΑΑΤΤΑΑΤΤΑΑ
"	
ribD/lysC	AATTTCATAGTTAGATCGTGTTATATGGTGAAGATATCGGGGCAGGGT
	GGAAATCCCGACCGGCGGTAGTAAAGCACATTTGCTTTAGAGCCCGTG
	ACCCGTGTGCATAAGCACGCGGTGGATTCAGTTTAAGCTGAAGCCGAC
	AGTGAAAGTCTGGATGGGAGATATCTCGTTGTTCATAATCATTTATGA
	TGATTAATTGATAAGCAATGAGAGTATTCCTCTCATTGCTTTTTTAT
	TGTGGACAAAGCGCTCTTTCTCCTCACCCGCACGAACCAAAATGTAAA
	GGGTGGTAATAC <mark>ATG</mark>
theo/lvsC	AATTTCATAGTTAGATCGTGTTATATGGTGAAGATAATACCAGCTTCG
line0/1ysC	
	GACAAAGUGUIUIIIUIUUIUAUUUGUAUGAAUUAAAAIGIAAAGGGI
	GGTAATAC <mark>ATG</mark>
<i>yitJ</i> expression	
platform chimeras	
vit / wild type	
yito wild type	CONCECCECOCONCETTENCECONCECCTETANTECECONTENCECON
	AGAGACAAAATCACTGACAAAGTCTTCTTCTTAAGAGGACTTTTTTTA
	TTTCTCTTTTTTCCTTGCTGATGTGAATAAAGGAGGCAGACA <mark>ATG</mark>
metE/yitJ	CTTCCTGACACGAAAATTTCATATCCGTTCTTA <mark>ATCGAGAGTTGGGCG</mark>
-	AGGGATTGGCCTTTTGACCCCAACAGCAACCGACCGTAATACCATTGT
	GAAATGGGGCGCACTGCTTTTCGCGCCGAGACTGATGTCTCATAAGGC
	ACGGTGCTAATTCCATCAGATTGTGTCTGAGAGAT <mark>TAAGAAGAGACAA</mark>
	TTTTCCTTCCTCATCTCAATAAACCACCACACAAATC
vot/uit l	
χρι/γπ	
	TATGGCACGCAAGTTTCTACCGGGCACCGTAAATGTCCGACTATTAAG
	AAGAGACAAAATCACTGACAAAGTCTTCTTCTTAAGAGGACTTTTTTT
	ATTTCTCTTTTTTCCTTGCTGATGTGAATAAAGGAGGCAGACA <mark>ATG</mark>
xpt(C74U)/vit.I	CTTCCTGACACGAAAATTTCATATCCGTTCTTA <mark>ATATAATCGCGTGGA</mark>
	TATGGCACGCAAGTTTCTACCGGGCACCGTAAATGTCCGA <mark>T</mark> TAT <mark>TAAG</mark>
	AAGAGACAAAATCACTGACAAAAGTCTTCTTCTTAAGAGGACTTTTTTT
	ATTICICITITICCIIGCIGAIGIGAATAAAGGAGGCAGACAAIG

lvsC/vit l	СТТССТСАСАССААААТТТСАТАТСССТТСТТА <mark>АСАТАСАССТСССАА</mark>
1930/9110	CTTCA A GA GTA TGCCTTTGCA GA A A GA TGCA TTCTGTGA A A A A GCCTG
	GAGGGCTATCTTAAGAAGAGACAAAATCACTGACAAAGTCTTCTTCTT
	AAGAGGACTTTTTTTATTCTCTTTTTTCCTTGCTGATGTGAATAAAG
	GAGGCAGACAATG
ribD/yitJ	CTTCCTGACACGAAAATTTCATATCCGTTCTTA <mark>TCGGGGCAGGGTGGA</mark>
	AATCCCGACCGGCGGTAGTAAAGCACATTTGCTTTAGAGCCCGTGACC
	CGTGTGCATAAGCACGCGGTGGATTCAGTTTAAGCTGAAGCCGACAGT
	GAAAGTCTGGATGGGAGATAAGAAGAGACAAAATCACTGACAAAGTCT
	TCTTCTTAAGAGGACTTTTTTTTATTTCTCTTTTTTCCTTGCTGATGTG
	AATAAAGGAGGCAGACAATG
theolyit	
line0/yill	CITCCIGACACGACAAAIIICAIAICCGIICIIA <mark>AIACCAGCIICGAAA</mark>
	CTTAAGAGGACTTTTTTTTATTTCTCTTTTTTTCCTTGCTGATGTGAATA
	AAGGAGGCAGACA <mark>ATG</mark>
metE expression	
platform chimeras	
metF wild type ²	CAAAAAATTAATAACATTTTCTCTT <mark>ATCGAGAGTTGGGCGAGGGATTG</mark>
more wild type	GCCTTTTGACCCCAACAGCAACCGACCGTAATACCATTGTGAAATGGG
	AAAGGAGGAGAAACA <mark>ATG</mark>
<i>metE</i> (P1-2)	CAAAAAATTAATAACAT <mark>GG</mark> TCTCTTATCGAGAGTTGGGCGAGGGATTG
	GCCTTTTGACCCCAACAGCAACCGACCGTAATACCATTGTGAAATGGG
	GCGCACTGCTTTTCGCGCCGAGACTGATGTCTCATAAGGCACGGTGCT
	AATTCCATCAGATTGTGTCTGAGAGATGAGAGAGGGCAGTGTTTTACGT
	AGAAAAGCCTCTTTCTCTCATGGGAAAGAGGCTTTTTGTTGTGAGAAA
	ACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGTTTTACATAT
	AAAGGAGGAGAAACA <mark>ATG</mark>
metF (P1-1)	CAAAAAATTAATAACAT <mark>G</mark> TTCTCTT <mark>ATCGAGAGTTGGGCGAGGGATTG</mark>
	GCCTTTTGACCCCAACAGCAACCGACCGTAATACCATTGTGAAATGGG
	CCCCACTCCTTTTCCCCCCCCACACTCATCTCTCATAACCCACCCCCT
	ATTCCATCACATTCTCTCTCACACATCACACACCACTCTTTACCT
<i>metE</i> (P1+1)	CAAAAAATTAATAACA <mark>G</mark> TITCTCTTATCGAGAGTTGGGCGAGGGATTG
	GCCTTTTGACCCCAACAGCAACCGACCGTAATACCATTGTGAAATGGG
	GCGCACTGCTTTTCGCGCCGAGACTGA <mark>TGTCTCATAAGGCACGGTGCT</mark>
	AATTCCATCAGATTGTGTCTGAGAGATGAGAGAGGGCAGTGTTTTACGT
	AGAAAAGCCTCTTTCTCTCATGGGAAAGAGGCTTTTTGTTGTGAGAAA
	ACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGTTTTACATAT
	AAAGGAGGAGAAACA <mark>ATG</mark>
metF (P1+2)	CAAAAAATTAATAAC <mark>TG</mark> TTTCTCTT <mark>ATCGAGAGTTGGGCGAGGGATTG</mark>
	GCCTTTTGACCCCAACAGCAACCGACCGTAATACCATTGTGAAATGGG
	GCGCACTGCTTTTCGCGCCGAGACTGATGTCTCATAAGCCACGGTGCT
	AATTCCATCAGATTGTGTGTGAGAGATGAGAGAGGGGGGGG
	AAAGGAGGAGAAACA <mark>AIG</mark>

vit.l/metF	CAAAAATTAATAACATTTTCTCTTTCAAGAGAAGCAGAGGGACTGGC
yno, more	CCGACGAAGCTTCAGCAACCGGTGTAATGGCGATCAGCCATGACCAAG
	GTGCTAAATCCAGCAAGCTCGAACAGCTTGGAAGAGAGAG
	TTTTACGTAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGCTTTTTGTT
	GTGAGAAAACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGTT
	TTACATATAAAGGAGGAGAAACA <mark>ATG</mark>
xnt/metF	CAAAAAATTAATAACATTTTCTCTTATATAATCGCGTGGATATGGCAC
Aptimete	GCAAGTTTCTACCGGGCACCGTAAATGTCCGACTATGAGAGAGGCAGT
	GTTTTACGTAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGCTTTTTGT
	TGTGAGAAAACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGT
	TTTACATATAAAGGAGGAGAAACA <mark>ATG</mark>
xnt/metF (P1-2)	CAAAAAATTAATAACAT <mark>GG</mark> TCTCT <mark>TATATAATCGCGTGGATATGGCAC</mark>
	GCAAGTTTCTACCGGGCACCGTAAATGTCCGACTATGAGAGAGGCAGT
	GTTTTACGTAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGCTTTTTGT
	TGTGAGAAAACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGT
	TTTACATATAAAGGAGGAGAAACA <mark>ATG</mark>
vnt/metE (P1-1)	CAAAAATTAATAACAT <mark>G</mark> TTCTCTT <mark>ATATAATCGCGTGGATATGGCAC</mark>
	GCAAGTTTCTACCGGGCACCGTAAATGTCCGACTATGAGAGAGGCAGT
	GTTTTACGTAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGCTTTTTGT
	TGTGAGAAAACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGT
	TTTACATATAAAGGAGGAGAAACA <mark>ATG</mark>
ynt/metE(P1+1)	CAAAAAATTAATAACA <mark>G</mark> TTTCTCTT <mark>ATATAATCGCGTGGATATGGCAC</mark>
	GCAAGTTTCTACCGGGCACCGTAAATGTCCGACTATGAGAGAGGCAGT
	GTTTTACGTAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGCTTTTTGT
	TGTGAGAAAACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGT
	TTTACATATAAAGGAGGAGAAACA <mark>ATG</mark>
vnt/metE(P1+2)	
	GCAAGTTTCTACCGGCACCGTAAATGTCCGACTATGAGAGAGGCAGT
	GTTTTACGTAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGCTTTTTGT
	TGTGAGAAAACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGT
	TTTACATATAAAGGAGGAGAAACA <mark>ATG</mark>
vnt/C74LI)/metE	
	GCAAGTTTCTACCGGGCACCGTAAATGTCCGA <mark>T</mark> TATGAGAGAGGCAGT
	GTTTTACGTAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGCTTTTTGT
	TGTGAGAAAACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGT
	TTTACATATAAAGGAGGAGAAACA <mark>ATG</mark>
lvsC/metF	CAAAAAATTAATAACATTTTCTCTTAGATAGAGGTGCGAACTTCAAGA
IJOO/INCLE	GTATGCCTTTGGAGAAAGATGGATTCTGTGAAAAAGGCTGAAAGGGGA
	GCGTCGCCGAAGCAAATAAAACCCCATCGGTATTATTTGCTGGCCGTG
	CATTGAATAAATGTAAGGCTGTCAAGAAATCATTTTCTTGGAGGGCTA
	TCTGAGAGAGGCAGTGTTTTACGTAGAAAAGCCTCTTTCTCTCATGGG
	AAAGAGGCTTTTTGTGTGAGAAAACCTCTTAGCAGCCTGTATCCGCG
	GGTGAAAGAGAGTGTTTTACATATAAAGGAGGAGAAACA <mark>ATG</mark>
ribD/metE	CAAAAATTAATAACATTTTCTCTT TCGGGGCAGGGTGGAAATCCCCGA
	CCGGCGGTAGTAAAGCACATTTGCTTTAGAGCCCGTGACCCGTGTGCA
	TAAGCACGCGGTGGATTCAGTTTAAGCTGAAGCCGACAGTGAAAGTCT
	GGATGGGAGAGAGAGAGGCAGTGTTTTACGTAGAAAAGCCTCTTTCTC
	TCATGGGAAAGAGGCTTTTTGTGTGAGAAAACCTCTTAGCAGCCTGT
	ATCCGCGGGTGAAAGAGAGTGTTTTACATATAAAGGAGGAGAAACA <mark>AT</mark>
	G
theo/metE	CAAAAATTAATAACATTTTCTCTTATACCAGCTTCGAAAGAAGCCCT
	TGGCAG GAGAGAGGCAGTGTTTTACGTAGAAAAGCCTCTTTCTCTCAT
	GGGAAAGAGGCTTTTT GTTGTGAGAAAACCTCTTAGCAGCCTGTATCC
	GCGGGTGAAAGAGAGTGTTTTACATATAAAGGAGGAGAAACA <mark>ATG</mark>

tet/metE	CAAAAAATTAATAACATTTTCTCTTGGGAGAGGTGAAGAATACGACCA CCTAGGTAGAAATACCTAAAACATACCCGAGAGAGGGCAGTGTTTTACG TAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGGCTTTTT GTTGTGAGAA AACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGTTTTACATA TAAAGGAGGAGAAACA <mark>ATC</mark>
<i>tet/metE</i> (P1-1)	CAAAAAATTAATAACATTT <mark>ACTCTTGGGAGAGGTGAAGAATACGACCA CCTAGGTAGAAATACCTAAAACATACCC</mark> GAGAGAGGCAGTGTTTTACG TAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGCTTTTT AAACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGTTTTACATA TAAAGGAGGAGAAACA <mark>ATC</mark>
<i>tet/metE</i> (P1-2)	CAAAAAATTAATAACATTT <mark>AG</mark> TCTTGGGAGAGGTGAAGAATACGACCA CCTAGGTAGAAATACCTAAAACATACCCGAGAGAGGGCAGTGTTTTACG TAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGGCTTTTT AACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGTTTTACATA TAAAGGAGGAGAAACA <mark>ATC</mark>
<i>tet/metE</i> (P1-3)	CAAAAAATTAATAACATTTAGGCTTGGGAGAGGTGAAGAATACGACCA CCTAGGTAGAAATACCTAAAACATACCCGAGAGAGGGCAGTGTTTTACG TAGAAAAGCCTCTTTCTCTCATGGGAAAGAGGGCTTTTT AACCTCTTAGCAGCCTGTATCCGCGGGTGAAAGAGAGTGTTTTACATA TAAAGGAGGAGAAACAATC

¹The coloring scheme for the sequences is as follows: cyan, expression platform; green, aptamer domain; red, ATG start codon of first coding region; yellow, mutation introduced to a wild type sequence.

to a wild type sequence. ²The "wildtype" *metE* sequence used in this paper starts at the +11 nucleotide of the predicted start site of the *metE* transcript.

Supplementary Table 2: Complete sequence of pRR1

CTCGGGTTGCCTGGCGGCAGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAA ACGCCGTAGCGCCGATGGTAGTGTGGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAA TCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAGGGT GGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATCCTGACGGAT GGCCTTTTTGCGCTAGCCACGCTAACACCACGTCGTCCCTATCTGCTGCCCTAGGTCTATGAGT GGTTGCTGGATAACTTGACAGGCATGCATAAGGCTCGTATAATATTCCAGGGAGACCACAACGG TTTCCCAAGAAGGAGATATACCATGACCATGATTACGCCAAGCTTGCATGCCTGCAGGTCGACTC TAGAGGATCCCCGGGTACCGGTAGAAAAATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTC CCAATTCTTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGA CATGGCCAACACTTGTCACTACTTTCTCTTATGGTGTTCAATGCTTTTCCCGTTATCCGGATCAT ATGAAACGGCATGACTTTTTCAAGAGTGCCATGCCCGAAGGTTATGTACAGGAACGCACTATATC TTTCAAAGATGACGGGAACTACAAGACGCGTGCTGAAGTCAAGTTTGAAGGTGATACCCTTGTTA ATCGTATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTCTCGGACACAAACTCGAG CTTCAAAATTCGCCACAACATTGAAGATGGATCCGTTCAACTAGCAGACCATTATCAACAAAATA CTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCGACAAATCTGCCCTT TCGAAAGATCCCAACGAAAAGCGTGACCACATGGTCCTTCTTGAGTTTGTAACTGCTGCTGGGAT TACACATGGCATGGATGAGCTCTACAAATAATGAATTCCAACTGAGCGCCGGTCGCTACCATTAC CAACTTGTCTGGTGTCAAAAATAATAGGCCTACTAGTCGGCCGTACGGGCCCTTTCGTCTCGCGC GTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTG TAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGG CTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATAC CGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGGCCTTAAGGGCCTCGTGATACGCCTATT TTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATG TGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAA TAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGT CGCCCTTATTCCCTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGA AAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGC GGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCT GCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACT ATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACA AACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCC TTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCT ACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGG CTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCA CTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGGGGTCAGGCAACTAT GGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAG ACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAG GTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGC GTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCT CTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCC GTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGT TACCAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTA CCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAAC GACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGA GAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGGCGCACGAGGGAGCTTCCA GGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATT TTTGTGATGCTCGTCAGGGGGGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTACGGT TCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGAT AACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGA GTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTA TTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTAT ACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCCGCCAACACCCGGCTGAC GCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAG CTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGGCGAGGCAGCTGCGGGTAAAGCTCAT CAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTC TCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTT GGTCACTGATGCCTCCGTGTAAGGGGGGATTTCTGTTCATGGGGGGTAATGATACCGATGAAACGAG AGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGT AAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTT CGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACA TAATGGTGCAGGGCGCGGAACGTTTCCGCGCTTCCAGGACCACGGAACCATT CATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGCCTTCCGCGTTCCGCGTATCGG TGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCA CGATCATGCGCACCCGTGGCCAGGACCCAACGCTG

Supplementary Table 3: Defined medium used in this study.

Trace metals solution:

HCI	10% v/v
FeCl ₃ -6H ₂ O	10 mg/mL
ZnCl ₂ -4H ₂ O	2 mg/mL
CoCl ₂ -6H ₂ O	2 mg/mL
Na ₂ MoO ₄ -2H ₂ O	2 mg/mL
CaCl ₂ -2H ₂ O	1 mg/mL
CuCl ₂	1 mg/mL
MnCl ₂	1 mg/mL
H_3BO_3	0.5 mg/mL

CSB supplement:

Glucose	20% (w/v)
0.5 M disodium citrate	67 mg/mL
Trace metals solution	10% v/v
MgSO ₄	3.3 mg/ml
Thiamine	0.33 mg/mL

CSB salts:

NaH ₂ PO ₄	37 mM
K ₂ HPO ₄	66 mM
$(NH_4)_2SO_4$	15 mM

CSB Media:

CSB salts	500 ml
CSB supplement	15 ml
10% Casamino acids (sterile)	5 ml