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Supplementary Information A - Influence Analysis

To further study the relationship between stocks and an index, we use partial correlation

influence analysis, introduced via dependency network methodology [1]. By studying vari-

able partial correlations, we determine how each variable influences other system variables.

A partial correlation is a parameter that indicates how a third mediating variable affects the

correlation between two other variables [1–9]. The first step in dependency network analysis

is constructing correlation and partial correlation matrices. The correlations between the

time series of all variables in the dataset, are calculated using Pearson’s formula [10]

C(i, j) =
〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉

σiσj
. (1)

Here Xi and Xj are the time series of variables i and j of length n, σi and σj are the standard

deviation, and 〈· · · 〉 indicates an average. Note that the correlation for all pairs of variables

defines a symmetric correlation matrix in which the (i, j) element is the correlation between

variables i and j.

We next use the resulting correlation matrix to compute the partial correlations. The first-

order partial correlation coefficient is a statistical measure indicating how a third variable

affects the correlation between two other variables. The partial correlation between variable

i and k with respect to a third variable j, PC(i, k|j), is defined

PC(i, k|j) =
C(i, k)− C(i, j)C(k, j)√

(1− C2(i, j))(1− C2(k, j))
, (2)

where C(i, j), C(i, k), and C(j, k) are the correlations defined above. The relative effect of

variable j on the correlation C(i, k), is given by

d(i, k|j) ≡ C(i, k)− PC(i, k|j). (3)

This transformation avoids the trivial case where variable j appears to strongly affect

correlation C(i, k), primarily because the values of C(i, j), C(i, k), and C(j, k) are small.

We note that this quantity can be viewed either as the correlation dependency of C(i, k) on

variable j (the term used here) or as the correlation influence of variable j on the correlation

C(i, k). We next define the total influence of variable j on variable i, or the dependency

D(i, j) of variable i on variable j to be

D(i, j) ≡ 1

N − 1

N−1∑
k 6=j

d(i, k|j). (4)
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As defined, D(i, j) is a measure of the average influence of variable j on correlations C(i, k)

over all variables k not equal to j. All variable dependencies define a dependency matrix

D whose i, j element is the dependency of variable i on variable j. Note that, while the

correlation matrix C is a symmetric matrix, because the influence of variable j on variable

i is usually not equal to the influence of variable i on variable j, the dependency matrix D

is non-symmetrical.

In the final step, we sort the variables according to the system-level influence of each

variable on the correlations between all other pairs. The system-level influence of variable

j, SLI(j), is defined as the sum of the influence of j on all other variables i not equal to j,

SLI(j) ≡
N−1∑
i 6=j

D(i, j). (5)

Supplementary Information B - List of Securities
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TABLE I: List of asset security number, used in the analysis, for all securities belonging to the

TA25 index for the period 2006-2010.

# Asset number # Asset Number

1 126011 19 691212

2 224014 20 695437

3 230011 21 736579

4 260018 22 746016

5 268011 23 777037

6 273011 24 798017

7 281014 25 829010

8 304014 26 1081124

9 475020 27 1081165

10 576017 28 1081819

11 585018 29 1083484

12 604611 30 1084128

13 608018 31 1087949

14 611012 32 1092428

15 629014 33 1098474

16 639013 34 1100007

17 649012 35 1101534

18 662577 36 2590248
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