

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012

Mechanistic Studies on a Sulfoxide Transfer Reaction Mediated by Diphenyl Sulfoxide/Triflic Anhydride

Martin A. Fascione,^[a] Sophie J. Adshead,^[a] Pintu K. Mandal,^[a] Colin A. Kilner,^[a] Andrew G. Leach,^[b] and W. Bruce Turnbull^{*[a]}

chem_201102861_sm_miscellaneous_information.pdf

Supporting Information:

Studies on the mechanism of a sulfoxide transfer reaction mediated by diphenyl sulfoxide-triflic anhydride

Martin A. Fascione,^[a] Sophie J. Adshead,^[a] Pintu K. Mandal,^[a] Colin A. Kilner,^[a] Andrew G. Leach^[b] and W. Bruce Turnbull^{*[a]}

[a] School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK; [b] AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK.

	Page
General Experimental Methods	S2
ReactIR monitoring of the diphenyl sulfoxide – triflic anhydride reaction	S 3
Identification and quantification of sulfonium ion 13 as a byproduct	
of the oxidation reaction	S6
Synthetic procedures	S8
Density Functional Theory Calculations	S22
References	S42
NMR Spectra	S43

General Experimental Methods

All solvents were dried prior to use, according to standard methods.^[1] Trifluoromethanesulfonic anhydride (Tf₂O) was distilled from phosphorus pentoxide under a $N_2(g)$ atmosphere. Trimethylsilyl trifluoromethanesulfonate (TMSOTf) was freshly distilled under a N₂(g) atmosphere. Where appropriate anhydrous quality material was purchased. All solvents used for flash chromatography were GPR grade, except hexane and EtOAc, when HPLC grade was used. All concentrations were performed in vacuo, unless otherwise stated. All reactions were performed in oven dried glassware under a $N_2(g)$ atmosphere, unless otherwise stated. ¹H NMR spectra were recorded at 500 MHz on a Bruker Avance 500 instrument or at 300 MHz on a Bruker Avance 300 instrument. ¹³C NMR spectra were recorded at 75 MHz on a Bruker Avance 300 instrument. ¹⁹F NMR spectra were recorded at 470 MHz on a Bruker Avance 500 instrument. Chemical shifts are given in parts per million downfield from tetramethylsilane. The following abbreviations are used in ¹H NMR analysis: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doubledoublet, dt = double triplet, td = triple doublet, ddd = double doublet doublet. Electrospray (ES+) ionisation mass spectra were obtained on a Bruker HCT Ultra Ion Trap mass spectrometer connected to an Agilent 1200 series HPLC system equipped with a Phenomonex Luna C18(2) (5 micron, 50 mm x 2.0 mm) column. High resolution EI mass spectra were performed on a Waters GCT Premiere mass spectrometer and high resolution ES+ were performed on a Bruker Daltonics MicroTOF mass spectrometer. Isotopic ratios were calculated by comparison of the peak area of the most abundant ion adduct using Bruker Compass DataAnalysis 4.0 software. Infra-red spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer. Analytical TLC was performed on silica gel 60-F²⁵⁴ (Merck) with detection by fluorescence and/or charring following immersion in Phosphomolybdic acid (PMA), or 5% H₂SO₄/MeOH solution for carbohydrates. Sulfoxides were detected on TLC plates using trifluoroacetic anhydride/sodium iodide according to the method of Drabowicz et al.^[2]

ReactIR monitoring of the diphenyl sulfoxide - triflic anhydride reaction

A solution of diphenyl sulfoxide (244 mg, 1.21 mmol) in CH₂Cl₂ (2 mL) was cooled to −32 °C. An IR spectrum was recorded every 15 seconds using a ReactIR 45m (Mettler Toledo) equipped with a 1.5 m AgX fiber and a 9.5 mm DiComp (Diamond) probe. After acquiring baseline spectra for 10.5 mins, trifluoromethane sulfonic anhydride (0.20 mL, 1.21 mmol) was added in two aliquots within 45 seconds. The absorbance spectra (and corresponding second derivative spectra) were analyzed using the ConcIRTTM software package (Mettler Toledo). The authors thank Caroline Edwards, Andrew Smith and Jon Goode (Mettler Toledo AutoChem) for acquisition and analysis of the ReactIR data.

Figure S1 (following two pages). (a) 3-D plot of IR spectra as a function of time, highlighting the point at which triflic anhydride was added to the reaction mixture; (b) Overlay of IR spectra highlighting the spectral changes associated with the consumption of diphenyl sulfoxide and formation of reaction intermediates; (c) overlay of IR spectra following subtraction of the spectrum acquired at 9 min 25 sec (i.e., before addition of triflic anhydride); (d) second derivative of spectra displayed in part (c); (e) concentration profile of different species identified using the ConcIRT software; (f) comparison of spectra determined using ConcIRT software for component 1 (part e) overlaid with experimental reference spectra acquired for diphenyl sulfoxide and CH_2Cl_2 ; (g) concentration profile of different species identified using the ConcIRT software (in this case diphenyl sulfoxide is component 2). Baseline changes that appear in the original spectra upon addition of triflic anhydride are removed in the second derivative mathematical treatment of the data; this difference may account for why fewer components are observed in the derivatised ConcIRTdata.

ReactIR spectra of the reaction intermediate formation between 969 & 1237cm⁻¹ – Reaction 1

(b)
Overlaid absorbance spectra collected during the formation of the reaction intermediate – Reaction 1

(f)

ConCIRT Component 1 spectra vs reference spectra - Reaction 1

(g)

Figure S1 parts (e)-(f)

Identification and quantification of sulfonium ion 13 as a byproduct of the oxidation reaction The formation of (4-phenylthiophenyl)diphenylsulfonium triflate **13** was confirmed using LC-MS by comparison with an authentic sample (Sigma). A solution of 2-methoxy-2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-*e*]-1,4-oxathiane **1** (30 mg, 0.066 mmol), diphenyl sulfoxide (37 mg, 0.184 mmol) and DTBMP (041 mg, 0.198 mmol) in CH₂Cl₂ (0.3 mL) was cooled to -60 °C before addition of Tf₂O (16 µL, 0.092 mmol). After stirring for 1.5 h at this temperature, the mixture was diluted with CH₂Cl₂ (0.2 mL) and an aliquot (10 µL) was removed for analysis. The sample was diluted with MeOH (990 µL) and 5 x 5 µL aliquots of this solution were each diluted further with MeOH (995 µL). LC-MS analysis (Bruker HCT Ultra Ion Trap mass spectrometer connected to an Agilent 1200 series HPLC system equipped with a Phenomonex Luna C18(2) (5 micron, 50 mm x 2.0 mm) column) showed two major peaks in the ion chromatogram (Fig S2a). The peak eluting at 1.66 min had a mass of 371.1 Da and was identical to an authentic sample of (4-phenylthiophenyl)diphenylsulfonium triflate **13** (Fig S2b). The second peak eluting at 1.86 min had mass of 206.2 Da which corresponds to the protonated form of DTBMP.

Standard solutions of sulfonium ion **13** in MeOH were prepared with concentrations ranging from 0.52-4.14 µg/mL. Measurement of the total ion count for each the sulfonium ion sample was used to plot a standard curve (Fig S3) for comparison with the five samples from the reaction mixture, which had an average ion count of $9.45 \times 10^7 \pm 1.74 \times 10^7$. This value corresponds to a sulfonium ion concentration of $1.46 \pm 0.22 \mu g/mL$ for the mass spec sample, and $29 \pm 4 \text{ mg}$ of sulfonium salt **13** in the original reaction mixture. The theoretical yield of compound **13** from this reaction was 34.4 mg.

Fig. S2. Comparison of LC-MS ion count chromatograms for a) crude product mixture from oxidation of oxathiane **1** and b) an authentic sample of the triflate salt of sulfonium ion **13**. Neutral molecules e.g., the oxathiane-*S*-oxide product **2**, were also present, but have much lower intensities than the cationic byproducts **13** and protonated di-*t*-butylmethylpyridine **DTBMP-H**⁺.

Fig. S3. Standard curve of ion count vs concentration of sulfonium triflate salt **13**. Each data point is the average of three measurements, with error bars corresponding to the standard deviation of these measurements.

2-Methoxy-2-(S)-phenyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-e]-1,4-

Tf₂O (52 μL, 0.308 mmol) was added to a solution of 2-methoxy-2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-*e*]-1,4-oxathiane **1** (100 mg, 0.220 mmol), diphenyl sulfoxide (124 mg, 0.617 mmol), DTBMP (135 mg, 0.661 mmol) and 4 Å mol. sieves (50 mg) in CH₂Cl₂ (1 mL) at -60 °C. The reaction mixture was stirred for 5 min at -60 °C, then isopropanol (25 μL, 0.33 mmol) was added, and the reaction mixture gradually raised to RT over 75 min. The mixture was then quenched with aq. NaHCO₃ (2 mL), diluted with CH₂Cl₂ (5 mL), washed with aq. NaCl (2 x 5 mL), dried (MgSO₄) and concentrated to leave a crude colourless solid. The crude solid was purified by flash column chromatography (silica; 2:1 (v/v) hexane-EtOAc→1:1 (v/v) hexane-EtOAc) to afford **2** (74 mg, 72%, dr: 96:4) as colourless needles, m.p. 181.3-185.4 °C (equatorial diastereomer, from 1:1 (v/v) hexane-EtOAc); R_f 0.56 (2:1 (v/v) EtOAc-hexane); analytical data for compound **2** were identical to those reported previously.^[3]

2-(S)-Phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-*e*]-1,4-oxathiane-S-oxide (4)

Tf₂O (28 μL, 0.165 mmol) was added to a solution of 2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxyβ-D-glucopyranoso)[1,2-*e*]-1,4-oxathiane **3** (50 mg, 0.118 mmol), diphenyl sulfoxide (67 mg, 0.330 mmol), DTBMP (72 mg, 0.354 mmol) and 4 Å mol. sieves (25 mg) in CH₂Cl₂ (500 μL) at -60 °C. The reaction mixture was stirred for 5 min at -60 °C, then MeOH (7 μL, 0.18 mmol) was added, and the reaction mixture was gradually raised to RT over 90 min. The mixture was then quenched with aq. NaHCO₃ (1 mL), diluted with CH₂Cl₂ (5 mL), washed with aq. NaCl (2 x 10 mL) and concentrated to leave a crude colourless solid. The crude solid was purified by flash column chromatography (silica; 1:1 (v/v) hexane-EtOAc) to afford **4** (40 mg, 78%, dr: 8:92) as a colourless glassy solid; R_f 0.13 (1:1 (v/v) hexane-EtOAc); analytical data for compound **4** were identical to those reported previously.^[4]

¹⁸O-Labelled diphenyl sulfoxide [¹⁸O]-5

Tf₂O (209 µL, 1.24 mmol) was added to a solution of diphenyl sulfoxide 5 (250 mg, 1.24 mmol) in CH₂Cl₂ (4.8 mL) at -60 °C in a cardice bath. The reaction mixture was held at -60 °C for 10 min, and then H₂O (97% ¹⁸O, 27 µL, 1.49 mmol) was added. The reaction mixture was then instantly removed from the cardice bath and then stirred for 30 min, before quenching with triethylamine (378 µL, 2.72 mmol), diluted with CH₂Cl₂ (10 mL), and washed with 1M HCl (3 x 10 mL), aq. NaHCO₃ (3 x 10 mL), aq. NaCl (3 x 10 mL), dried (MgSO₄) and concentrated to afford a crude solid. The crude solid was purified by flash column chromatography (silica; 2:1 (v/v) hexane-EtOAc) to afford [¹⁸O]-5 (161 mg, 64%, 87% ¹⁸O incorporation) as a crystalline colourless solid. The product (50 mg, 0.248 mmol) was redissolved in CH₂Cl₂ (960 μ L) at -60 °C in a cardice bath, and Tf₂O (42 µL, 0.248 mmol) was added to the solution. The reaction mixture was held at -60 °C for 10 min, and then H₂O (97% ¹⁸O, 5.35 µL, 0.297 mmol) was added. The reaction mixture was then instantly removed from the cardice bath and then stirred for 30 min, before quenching with triethylamine (76 µL, 0.544 mmol), diluted with CH₂Cl₂ (5 mL), and washed with 1M HCl (3 x 5 mL), aq. NaHCO₃ (3 x 5 mL), aq. NaCl (3 x 5 mL), dried (MgSO₄) and concentrated to afford a crude solid. The crude solid was purified by flash column chromatography (silica; 2:1 (v/v) hexane-EtOAc) to afford [¹⁸O]-5 (35 mg, 70%, 92% ¹⁸O incorporation) as a crystalline colourless solid. Analytical data were identical to those reported previously.^[5]

Fig. S4. a) Mass spectrum and b) expansion of $[^{18}O]$ -5 (87% ^{18}O incorporation).

Fig. S5. a) Overall mass spectrum and b) expansion of [¹⁸O]-5 (92% ¹⁸O incorporation).

Reaction of [¹⁸O]-5 (92% ¹⁸O), [¹⁶O]-15 and Tf₂O (1:1:1 mixture)

Tf₂O (20.7 μ L, 0.123 mmol) was added to a solution of diphenyl sulfoxide [¹⁸O]-5 (92% ¹⁸O) (25 mg, 0.123 mmol) and ditolyl sulfoxide [¹⁶O]-15 (28 mg, 0.123 mmol) in CH₂Cl₂ (980 μ L) at -60 °C in a cardice bath. The reaction mixture was held at -60 °C for 10 min, and then H₂O (2.7 μ L, 0.147 mmol) was added, followed by triethylamine (37.4 μ L, 0.270 mmol). The reaction mixture was then instantly removed from the cardice bath and diluted with CH₂Cl₂ (10 mL), and washed with 1M HCl (10 mL), aq. NaHCO₃ (10 mL), aq. NaCl (10 mL), dried (MgSO₄) and concentrated to afford a crude mixture, which was analysed by HR-ESIMS.

Fig. S6. a) Overall mass spectrum and expansions highlighting b) [¹⁸O]-5 (33% ¹⁸O incorporation) and c) [¹⁸O]-15 (32% ¹⁸O incorporation).

Reaction of [¹⁸O]-5 (92% ¹⁸O), [¹⁶O]-15 and Tf₂O (1:1:2 mixture)

Tf₂O (33 µL, 0.196 mmol) was added to a solution of diphenyl sulfoxide [¹⁸O]-5 (92% ¹⁸O) (20 mg, 0.098 mmol) and ditolyl sulfoxide [¹⁶O]-15 (22.6 mg, 0.098 mmol) in CH₂Cl₂ (795 µL) at -60 °C in a cardice bath. The reaction mixture was held at -60 °C for 10 min, and then H₂O (4.3 µL, 0.235 mmol) was added, followed by triethylamine (60 µL, 0.431 mmol). The reaction mixture was then instantly removed from the cardice bath and diluted with CH₂Cl₂ (10 mL), and washed with 1M HCl (10 mL), aq. NaHCO₃ (10 mL), aq. NaCl (10 mL), dried (MgSO₄) and concentrated to afford a crude mixture, which was analysed by HR-ESIMS.

Fig. S7. a) Overall mass spectrum and expansions of b) $[^{18}O]$ -5 (28% ^{18}O incorporation) and c) $[^{18}O]$ -15 (26% ^{18}O incorporation).

2-Methoxy-2-(S)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-*e*]-1,4oxathiane S-[¹⁸O]-oxide (2)

Tf₂O (26 μL, 0.154 mmol) was added to a solution of 2-methoxy-2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-*e*]-1,4-oxathiane **1** (50 mg, 0.110 mmol), diphenyl sulfoxide [¹⁸O]-5 (87% ¹⁸O) (63 mg, 0.308 mmol), DTBMP (68 mg, 0.330 mmol) and 4 Å mol. sieves (25 mg) in CH₂Cl₂ (500 μL) at -60 °C. The reaction mixture was stirred for 40 min at -60 °C then gradually raised to -30 °C over 30 min. The mixture was then quenched with aq. NaHCO₃ (1 mL), diluted with CH₂Cl₂ (5 mL), washed with aq. NaCl (2 x 5 mL), dried (MgSO₄) and concentrated to leave a crude colourless solid. The crude solid was purified by flash column chromatography (silica; 4:1 (v/v) hexane-EtOAc→3:2 (v/v) hexane-EtOAc) to afford **2-R** (24 mg, 46%, 87% ¹⁸O incorporation) as the major product as colourless needles, m.p. 181.3-185.4 °C (from 1:1 (v/v) hexane-EtOAc); R_f 0.56 (2:1 (v/v) EtOAc-hexane); Found [M+NH₄]⁺ 490.1585, C₂₁H₃₀NO₉¹⁸OS requires 490.1627; other analytical data for compound **2-R** were identical to those reported previously.^[3]

2-S (5 mg, 10%, 87% ¹⁸O incorporation) was isolated as the minor product as colourless needles; m.p. 185.7-188.2 °C (from 1:1 (v/v) hexane-EtOAc). R_f 0.38 (2:1 (v/v) EtOAc-hexane); Found $[M+NH_4]^+$ 490.1593, $C_{21}H_{30}NO_9^{18}OS$ requires 490.1627; other analytical data for compound **2-S** were identical to those reported previously.^[3]

2-(S)-Phenyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-*e*]-1,4-oxathiane (S)-S-[¹⁸O]-oxide (4-S)

Tf₂O (14 μL, 83 μmol) was added to a solution of 2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy-β-Dglucopyranoso)[1,2-*e*]-1,4-oxathiane **3** (25 mg, 59 μmol), diphenyl sulfoxide [¹⁸O]-**5** (**87%** ¹⁸O) (34 mg, 0.165 mmol), DTBMP (36 mg, 0.176 mmol) and 4 Å mol. sieves (12 mg) in CH₂Cl₂ (270 μL) at -60 °C. The reaction mixture was stirred for 40 min at -60 °C then gradually raised to -30 °C over 30 min. The mixture was then quenched with aq. NaHCO₃ (1 mL), diluted with CH₂Cl₂ (5 mL), washed with aq. NaCl (2 x 5 mL), dried (MgSO₄) and concentrated to leave a crude colourless solid. The crude solid was purified by flash column chromatography (silica; 1:1 (v/v) hexane-EtOAc) to afford **4-S** (18 mg, 69%, 83% ¹⁸O incorporation) as a colourless glassy solid; R_f 0.13 (1:1 (v/v) EtOAc-hexane); Found [M+NH₄]⁺ 460.1498, C₂₀H₂₈NO₈¹⁸OS requires 460.1522; other analytical data for compound **4-S** were identical to those reported previously.^[4]

Fig. S8. a) Mass spectrum and expansion of b) [¹⁸O]-4-S (83% ¹⁸O incorporation).

Activation of sulfoxide 2-R with trifluoromethanesulfonic anhydride and quenching of the reaction mixture with diphenyl sulfide

Tf₂O (20 μL, 0.117 mmol) was added to a solution of 2-methoxy-2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-*e*]-1,4-oxathiane4-*R*)-*S*-oxide **2-***R* (50 mg, 0.106 mmol) and DTBMP (66 mg, 0.319 mmol) in CH₂Cl₂ (490 μL) at -60 °C. After 5 min diphenyl sulfide **26** (35 μL, 0.213 mmol) was added and the reaction mixture was stirred at -60 °C for 40 min and then warmed to RT over 15 min. The mixture was then quenched with aq. NaHCO₃ (1 mL), diluted with CH₂Cl₂ (5 mL), washed with aq. NaCl (2 x 5 mL), dried (MgSO₄) and concentrated to leave a crude colourless solid. The crude solid was purified by flash column chromatography (silica; 3:1 (v/v) hexane-EtOAc) to afford 2-methoxy-2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy-β-D-glucopyranoso)[1,2-*e*]-1,4-oxathiane **1** (30 mg, 62%) as colourless needles, m.p. 164.2-166.8 °C (from MeOH); R_f 0.35 (3:1 (v/v) hexane-EtOAc); analytical data for compound **1** were identical to those reported previously.^[3]

Reaction of ¹⁸O-enriched diphenyl sulfoxide [¹⁸O]-5 with 2-methoxy-2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy- β -D-glucopyranoso)[1,2-*e*]-1,4-oxathiane-4-(*R*)-*S*-oxide 2-*R* in the presence of trifluoromethanesulfonic anhydride.

(a) Pre-activation of diphenyl sulfoxide with trifluoromethanesulfonic anhydride.

Tf₂O (23 µL, 134 µmol) was added to a solution of diphenyl sulfoxide (87% ¹⁸O, 55 mg, 268 µmol) and DTBMP (59 mg, 287 µmol) in CH₂Cl₂ (390 µL) at -60 °C. After 10 min, 2-methoxy-2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy- β -D-glucopyranoso)[1,2-*e*]-1,4-oxathiane-4-(*R*)-*S*-oxide **2-***R* (45 mg, 96 µmol) was added and the reaction mixture was stirred at -60 °C for 40 min. Diphenyl sulfide (22 µL, 134 µmol) was then added and the reaction mixture was warmed to RT over 10 min. The mixture was then quenched with aq. NaHCO₃ (1 mL), diluted with CH₂Cl₂ (5 mL), washed

with aq. NaCl (2 x 5 mL), dried (MgSO₄) and concentrated to leave a colourless oil. The crude solid was purified by flash column chromatography (silica; 3:2 (v/v) hexane-EtOAc) to afford **2-***R* (40 mg, 89%, 48% ¹⁸O incorporation) as the major product as colourless needles, m.p. 181.3-185.4 °C (from 1:1 (v/v) hexane-EtOAc); $R_f 0.56$ (2:1 (v/v) EtOAc-hexane); analytical data for compound **2-***R* were identical to those reported previously,^[3] and recovered diphenyl sulfoxide [¹⁸O]-5 (26 mg, 1.34 equiv. recovered, 44% ¹⁸O incorporation).

Fig. S9. a) Overall mass spectrum and expansion of b) $[^{18}O]$ -2-R (48% ^{18}O incorporation).

(b) Pre-activation of oxathiane 2-*R* with trifluoromethanesulfonic anhydride.

Tf₂O (14 μL, 82 μmol) was added to a solution of 2-methoxy-2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2dideoxy-β-D-glucopyranoso)[1,2-*e*]-1,4-oxathiane-4-(*R*)-*S*-oxide **2-***R* (35 mg, 74 μmol) and DTBMP (46 mg, 0.223 mmol) in CH₂Cl₂ (280 μL) at -60 °C. After 5 min, a solution of diphenyl sulfoxide (87% ¹⁸O, 34 mg, 0.163 mmol) in CH₂Cl₂ (60 μL) was added and the reaction mixture was stirred at -60 °C for 40 min. Diphenyl sulfide (14 μL, 82 μmol) was then added and the reaction mixture was warmed to RT over 10 min. The mixture was then quenched with aq. NaHCO₃ (1 mL), diluted with CH₂Cl₂ (5 mL), washed with aq. NaCl (2 x 5 mL), dried (MgSO₄) and concentrated to leave a crude colourless solid. The crude solid was purified by flash column chromatography (silica; 3:2 (v/v) hexane-EtOAc) to afford **2-***R* (20 mg, 57%, 83% ¹⁸O incorporation) as the major product as colourless needles, m.p. 181.3-185.4 °C (from 1:1 (v/v) hexane-EtOAc); $R_f 0.56$ (2:1 (v/v) EtOAc-hexane); analytical data for compound **2-***R* were identical to those reported previously.^[3]

Fig. S10. a) Overall mass spectrum and expansion of b) [¹⁸O]-2-*R* (83% ¹⁸O incorporation).

Reaction of ¹⁸O-enriched diphenyl sulfoxide [¹⁸O]-5 with 2-(*S*)-Phenyl-(3,4,6-tri-*O*-acetyl-1,2dideoxy- β -D-glucopyranoso)[1,2-*e*]-1,4-oxathiane-*S*-oxide 4-*S* in the presence of trifluoromethanesulfonic anhydride.

Tf₂O (14 µL, 83 µmol) was added to a solution of diphenyl sulfoxide (87% ¹⁸O, 34 mg, 165 µmol) and DTBMP (36 mg, 177 µmol) in CH₂Cl₂ (200 µL) at -60 °C. After 10 min, 2-(*S*)-phenyl-(3,4,6-tri-*O*-acetyl-1,2-dideoxy- β -D-glucopyranoso)[1,2-*e*]-1,4-oxathiane-4-(*S*)-*S*-oxide **4**-*S* (26 mg, 59 µmol) was added and the reaction mixture was stirred at -60 °C for 40 min. Diphenyl sulfide (15 µL, 83 µmol) was then added and the reaction mixture was warmed to RT over 10 min. The mixture

was then quenched with aq. NaHCO₃ (1 mL), diluted with CH₂Cl₂ (5 mL), washed with aq. NaCl (2 x 5 mL), dried (MgSO₄) and concentrated to leave a colourless solid. The crude solid was purified by flash column chromatography (silica; 1:1 (v/v) hexane-EtOAc) to afford **4-***S* (22 mg, 85%, 52% ¹⁸O incorporation) as the major product as a colourless glassy solid (from 1:1 (v/v) hexane-EtOAc); $R_f 0.13 (1:1 (v/v) EtOAc$ -hexane); analytical data for compound **4-***S* were identical to those reported previously,^[4] and recovered diphenyl sulfoxide [¹⁸O]-5 (14 mg, 1.17 equiv. recovered, 52% ¹⁸O incorporation).

Fig. S11. a) Overall mass spectrum and expansion of b) $[^{18}O]$ -4-S (52% ^{18}O incorporation).

2-[(2-Hydroxyethyl)sulfanyl]-1-phenylethan-1-one (31)

Bromoacetophenone **30** (500 mg, 2.51 mmol) was added to a solution of β -mercaptoethanol **29** (196 mg, 2.51 mmol) and triethylamine (280 mg, 2.76 mmol) in CH₂Cl₂ (8 mL) and the mixture was stirred at RT for 30 min. The mixture was diluted with CH₂Cl₂ (50 mL), washed with water, dried (MgSO₄) and concentrated to give ketone **31** as a colourless oil (477 mg, 97%) which was used in the next step without further purification. R_f =0.17 (hexane/EtOAc 2:1); ¹H NMR (500 MHz, CDCl₃, 298 K): δ =7.98 (d, ³*J*(H,H)=7.5 Hz, 2H; Ar-H), 7.60 (t, ³*J*(H,H)=7.5 Hz, 1H; Ar-H), 7.49 (d, ³*J*(H,H)=7.5 Hz, 2H; Ar-H), 3.88 (s, 2H; SCH₂C(O)), 3.77 (q, ³*J*(H,H)=5.8 Hz, 2H; CH₂OH), 2.79 (t, ³*J*(H,H)=5.8 Hz, 2H; CH₂CH₂S), 2.48 ppm (t, ³*J*(H,H)=5.8 Hz, 1H; OH); ¹³C NMR (75 MHz,

CDCl₃, 300 K): δ =195.1 (C=O), 135.2 (Ar-C), 133.8 (Ar-C), 128.9 (Ar-C), 128.9 (Ar-C), 60.7 (*C*H₂OH), 37.1 (*SC*H₂C(O)), 35.7 ppm (CH₂*C*H₂S); IR (thin film): *v*=3393 (O-H), 1672 cm⁻¹ (C=O); HRMS (ESI): *m*/*z* calcd for C₁₀H₁₂O₂S+Na⁺: 219.0456 [*M*+Na⁺]; found: 219.0466.

2-Phenyl-1,4-oxathiane (rac-32)

A solution of 2-[(2-hydroxyethyl)sulfanyl]-1-phenylethan-1-one **31** in CH₂Cl₂ (5 mL) was cooled to 0 °C before dropwise addition of trimethylsilyl trifluoromethanesulfonate (765 mg, 3.44 mmol). Triethylsilane (401 mg, 3.44 mmol) was added dropwise to this mixture. After stirring for 90 min at 0 °C, the reaction was quenched by addition of MeOH (5 mL). The mixture was neutralised with triethylamine and concentrated to a crude oil. The product was purified by flash column chromatography (silica; hexane, then 3:1 (v/v) hexane-EtOAc) to afford rac-32 (288 mg, 70%) as a colourless oil. $R_{\rm f}$ =0.17 (hexane/EtOAc 2:1); ¹H NMR (500 MHz, CDCl₃, 298 K): δ =7.37-7.27 (m, 5H; Ar-H), 4.63 (dd, ${}^{3}J(H_{2ax},H_{3ax})=10.6$ Hz, ${}^{3}J(H_{2ax},H_{3eq})=2.1$ Hz, 1H; H-2ax), 4.39 (dt, ${}^{3}J(H_{6ax},H_{6eq})=12.0$ Hz, ${}^{3}J(H_{6eq},H_{5ax})={}^{3}J(H_{6eq},H_{5eq})=2.2$ Hz, 1H; H-6eq), 3.95 (td, ${}^{3}J(H_{6ax},H_{6ea}) = {}^{3}J(H_{5ax},H_{6ax}) = 12.0 \text{ Hz}, {}^{3}J(H_{6ax},H_{5ea}) = 2.0 \text{ Hz}, 1\text{H}; \text{H-6ax}), 3.02 (m, 1\text{H}; \text{H-5ax}), 2.89$ $(dd, {}^{3}J(H_{2ax}, H_{3ax}) = 10.6 \text{ Hz}, {}^{3}J(H_{3ax}, H_{3eq}) = 13.7 \text{ Hz}, 1\text{H}; \text{H-}3ax), 2.51 (brd, {}^{3}J(H_{3ax}, H_{3eq}) = 13.7 \text{ Hz}, 1\text{H}; H_{3ax}, H_{3ax}) = 13.7 \text{ Hz}, 10.6 \text{ Hz}, 1$ 1H; H-3eq), 2.24 ppm (dq, ${}^{3}J(H_{5ax}, H_{5eq})=13.7$ Hz, ${}^{3}J(H_{5eq}, H_{6ax})={}^{3}J(H_{5eq}, H_{6eq})={}^{4}J(H_{5eq}, H_{3eq})=2.2$ Hz; ¹³C NMR (75 MHz, CDCl₃, 300 K): δ=142.1 (Ar-C), 128.6 (Ar-C), 128.0 (Ar-C), 125.8 (Ar-C), 80.5 (C-2), 69.9 (C-6), 33.4 (C-3), 26.4 ppm (C-5) [Lit.]^[6] 80.4, 69.8, 33.2, 26.3 ppm; IR (thin film): $v=2909 \text{ cm}^{-1}$ (C=H); HRMS (EI): m/z calcd for $C_{10}H_{12}O_2S^+$: 180.0609 [M⁺]; found: 180.0614.

2-Phenyl-1,4-oxathiane-S-oxide (rac-33a)

Tf₂O (196 μ L, 1.16 mmol) was added to a solution of 2-phenyl-1,4-oxathiane **rac-32** (150 mg, 0.83 mmol), diphenyl sulfoxide (471 mg, 2.33 mmol) and DTBMP (513 mg, 0.25 mmol) in CH₂Cl₂ (5 mL) at -60 °C. After 90 min at that temperature the reaction was quenched by addition of sat. NaHCO₃ solution. The mixture was extracted into CH₂Cl₂, dried (MgSO₄) and concentrated to give a yellow oil. ¹H NMR spectroscopy of the crude product mixture showed a 88:12 ratio of

axial:equatorial sulfoxide isomers. The axial sulfoxide was separated by column chromatography (silica; gradient elution 2:1 to 1:8 (v/v) hexane-EtOAc) to afford **rac-33a** (104 mg, 64%) as a colourless oil. $R_{\rm f}$ =0.16 (hexane/EtOAc 1:4); ¹H NMR (500 MHz, CD₃OD, 298 K): δ =7.40-7.27 (m, 5H; Ar-H), 5.24 (dd, ³*J*(H_{2ax},H_{3ax})=11.0 Hz, ³*J*(H_{2ax},H_{3eq})=2.3 Hz, 1H; H-2ax), 4.57 (td, ³*J*(H_{6ax},H_{6eq})= ³*J*(H_{6ax},H_{5ax})=12.7 Hz, ³*J*(H_{6ax},H_{5eq})=1.7 Hz, 1H; H-6ax), 4.14-4.18 (m, 1H; H-6eq), 3.05-2.97 (m, 2H; H-3eq, H-5ax), 2.93 (dd, ³*J*(H_{2ax},H_{3ax})=11.0 Hz, ³*J*(H_{3ax},H_{3eq})=14.4 Hz, 1H; H-3ax), 2.84 ppm (m, 1H; H-5eq); ¹³C NMR (75 MHz, CD₃OD, 300 K): δ =141.9 (Ar-C), 129.6 (Ar-C), 129.2 (Ar-C), 127.0 (Ar-C), 70.4 (C-2), 59.5 (C-6), 50.6 (C-3), 44.0 ppm (C-5) [Lit.]^[6] 80.4, 69.8, 33.2, 26.3 ppm; IR (thin film): *v*=2920 (C-H), 1033 cm⁻¹ (S=O); HRMS (ESI): *m*/*z* calcd for C₁₀H₁₂O₂S+H⁺: 197.0636 [*M*+H⁺]; found: 197.0641.

Reaction of ¹⁸O-enriched diphenyl sulfoxide [¹⁸O]-5 with 2-phenyl-1,4-oxathiane-S-oxide rac-33 in the presence of trifluoromethanesulfonic anhydride.

Tf₂O (36 µL, 214 µmol) was added to a solution of diphenyl sulfoxide (87% ¹⁸O, 87 mg, 429 µmol) and DTBMP (94 mg, 459 µmol) in CH₂Cl₂ (1 mL) at -60 °C. After 10 min, 2-phenyl-1,4-oxathiane-*S*-oxide **rac-33a** (30 mg, 153 µmol) was added and the reaction mixture was stirred at -60 °C for 90 min. Diphenyl sulfide (36 µL, 214 µmol) was then added and the reaction mixture was warmed to RT over 10 min. The mixture was then quenched with aq. NaHCO₃ (1 mL), diluted with CH₂Cl₂ (5 mL), washed with aq. NaCl (2 x 5 mL), dried (MgSO₄) and concentrated to leave a colourless oil. ¹H NMR spectroscopy and ESIMS showed that the crude 2-phenyl-1,4-oxathiane-*S*-oxide **rac-3a** was an 85:15 ratio of axial:equatorial isomers that was 37% enriched in ¹⁸O.

Fig. S12. a) Mass spectrum and expansion of b) [¹⁸O]-rac33a/e (37% ¹⁸O incorporation).

Density functional theory calculations

For each of the species studied, a range of conformations were generated using the Monte-Carlo conformational searching approach implemented in MacroModel from Schrodinger Inc.^[7] This used the OPLS2005 forcefield.^[8] In order to generate conformations, the molecules were transformed where needed such that S⁺ atoms were modeled as N and bridging O atoms in S-O-S structures as CH₂. The resulting structures were subsequently transformed to the structure of interest by text editing. Conformations thus generated were subject to optimization with B3LYP/6-31G* in Gaussian09^[9] and the resulting structures were all verified as minima by calculation of second derivatives.^[10] The lowest energy conformations of each species were then subject to a reoptimisation with M06/6-31G*.^[11] A series of single points using B3LYP/6-311+G**, M06/6-311+G** and MPWB95/AUG-CC-PVTZ were performed on the B3LYP/6-31G* geometries, also in Gaussian09.^[9, 12] Finally, solvation free energies were computed using the IEFPCM model and either UAKS or Bondi radii in Gaussian03,^[13] in all cases using the B3LYP/6-31+G* electronic structure method and default settings for other parameters for the dichloromethane solvent.^[14] Vibrational corrections to free energies for the gas phase structures utilized the values computed for B3LYP/6-31G* at 213K.

The calculations support the hypothesis that all of the intermediates proposed in Scheme 3 are feasible structures with the exception of bis-sulfurane **10** which exhibited no barrier to dissociation in the gas phase. Monocation **6** and dication **8** displayed very similar S-O-S bond angles (116-118°) and S-O bond lengths (~1.7 Å) which place the sulfur atoms in dication **8** only 2.94 Å apart (Figure S13). Dications with the structure $[R_2S-SR_2]^{2+}$ are well documented in the literature^[15] and it would appear that there may be a similar bonding interaction between the two positively charged sulfur atoms in dication **8**. In contrast, the corresponding sulfur atoms in sulfurane **7** are over 3.5 Å apart, and its S-O bond lengths are similar to those in diphenyl sulfoxide **5** (~1.5 Å) and triflyloxy sulfonium ion **6** (~1.7 Å); as such, sulfurane **7** more closely resembles an adduct in which sulfoxide **5** and monocation **6** are connected through a long S-O bond (2.36 Å). Sulfurane **9** is similar in structure to sulfurane **7** except in the lengths of the apical S-O bonds. It is possible that sulfuranes **7** and **9** are intermediates in addition-elimination process that would allow the interconversion of monocation **6** and dication **8**, or triflate exchange in **6**.^[16]

Structures optimised using B3LYP/6-31G* or M06/6-31-G* in Gaussian09 were virtually identical; the only notable difference was a small adjustment of bond angles in the M06/6-31G* structure of sulfurane 7 to allow a π - π interaction between two of the phenyl groups. In contrast, single point calculations on the optimised structures employing a broad range of methods failed to give a consistent estimate of the relative energies of the various species. For example, while gas phase B3LYP/6-31G* and M06/6-31G* values were in generally good agreement (Table S1), the

other gas phase values and those with solvation corrections (Tables S2-S3) were quite divergent. Therefore, although the calculations indicate that most of the intermediates depicted in Scheme 3a are feasible structures, it was not possible to predict reliably the relative abundance of each species, nor the energy barriers separating them. Considering also the challenges of comparing the energies of species with different charges,^[17] no further analysis of these values was deemed appropriate.

Comparisons of oxathiane rings bearing axial or equatorial substitutents are given in tables S4-S6. In general, ΔG° values for the oxathiane-*S*-oxides were consistent across the range of methods used (within 1 kcal mol⁻¹). However, calculations on the putative charged intermediates (dithia dications, oxodisulfonium and triflyloxysulfonium ions) were again more divergent (range greater than 2 kcal mol⁻¹ in the gas phase).

Coordinates for all optimised structures are given on pages S29-S40.

Fig. S13. Structures of putative intermediates 5-9.

Optimisation method		B3	LYP/6-31G*		M06/6-31G*
Single point energy calculation	B3LYP/6-31G*	B3LYP/6-311+G**	M06/6-311+G**	MPWB95/AUG-CC-PVTZ	M06/6-31G*
$\begin{array}{cccc} O - & O - \\ S + & + & S + \\ Ph^{-} Ph & Ph^{-} S + Ph \\ 5 & 5 \end{array}$	0.0	0.0	0.0	0.0	0.0
$\begin{array}{c c} & & & \\ O - & OTf \\ & & + \\ Ph^{-}S^{+}Ph & Ph^{-}S^{+}Ph \\ & & \\ 5 & 6 \end{array}$	81.8	73.8	76.0	78.8	82.0
$ \begin{array}{cccc} $	1.8	-0.5	-6.8	2.3	-0.2
$\begin{array}{c c} Ph & Ph \\ +S-O-S+ & + TfO- + TfO- \\ Ph' & Ph \\ \hline 8 \end{array}$	212.5	194.7	200.1	205.4	213.5
$ \begin{array}{cccc} Ph & Ph \\ TfO-S-O-S+ \\ Ph & Ph \\ 9 \end{array} $	71.2	63.2	59.1	_	68.8

Table S1. Gas phase energy calculations for equilibria depicted in Scheme 3^[a]

[a] free energies at 213 K in kcal mol⁻¹ relative to two moles of diphenyl sulfoxide and 1 mole of triflic anhydride.

Optimisation method		B3	LYP/6-31G*		M06/6-31G*
Single point energy calculation	B3LYP/6-31G*	B3LYP/6-311+G**	M06/6-311+G**	MPWB95/AUG-CC-PVTZ	M06/6-31G*
$\begin{array}{ccccccc} O- & O- \\ & & \\ & S^+ & + & & + & Tf_2O \\ Ph^{-} & Ph & Ph^{-} & Ph \end{array}$	0.0	0.0	0.0	0.0	0.0
5 5					
$\begin{vmatrix} O - & OTf \\ S + & + & + \\ Ph^{-} S + & Ph^{-} S + \\ Ph^{-} S + & P$	9.4	1.5	3.6	6.4	8.4
5 6					
$ \begin{array}{cccc} $	3.9	1.6	-4.7	4.3	-2.9
$\begin{array}{ccc} Ph & Ph \\ +S-O-S+ & +TfO & +TfO \\ Ph & Ph \\ \bullet \end{array}$	28.5	10.8	16.2	21.5	27.9
$ \begin{array}{c c} $	11.7	3.6	-0.4	_	3.6

Table S2. Dichloromethane solution energy calculations for equilibria depicted in Scheme 3 (IEFPCM(UAKS)+B3LYP method)^[a]

[a] free energies at 213K (gas phase) with default settings for solvation free energy using UAKS radii in dichloromethane in kcal mol⁻¹ relative to

two moles of diphenyl sulfoxide and 1 mole of triflic anhydride.

Optimisation method		В	3LYP/6-31G*		M06/6-31G*
Single point energy calculation	B3LYP/6-31G*	B3LYP/6-311+G**	M06/6-311+G**	MPWB95/AUG-CC-PVTZ	M06/6-31G*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	0.0	0.0	0.0	0.0
$\begin{array}{c c} O- & OTf \\ Ph^{S+} & + & J+ \\ Ph^{S} Ph & Ph^{S+} Ph \\ 5 & 6 \end{array}$	1.8	-6.1	-3.9	-1.2	0.8
$ \begin{array}{cccc} O - & OTf \\ $	7.0	4.7	-1.6	7.4	0.2
Ph Ph +S-O-S+ + TfO + TfO Ph Ph 8	11.6	-6.1	-0.7	4.6	11.1
$ \begin{array}{c cccc} Ph & Ph \\ TfO-S-O-S+ \\ Ph & Ph \\ 9 \end{array} $	13.4	5.4	1.3	_	5.3

Table S3. Dichloromethane solution energy calculations for equilibria depicted in Scheme 3 (IEFPCM(BONDI)+B3LYP method)^[a]

[a] free energies at 213K (gas phase) with default settings for solvation free energy using Bondi radii in dichloromethane in kcal mol⁻¹ relative to

two moles of diphenyl sulfoxide and 1 mole of triflic anhydride.

Optimisation method		B3LYP/6-31G*				
Single point energy calculation	B3LYP/6-31G*	B3LYP/6-311+G**	M06/6-311+G**	MPWB95/AUG-CC-PVTZ	M06/6-31G*	
$\Delta G(AX - EQ) \text{ sulfoxide 1} \xrightarrow{O^-} O^-$	-1.4	-0.8	-1.6	-1.4	-1.8	
$MeO \qquad MeO O^{-}$ $MeO \qquad O^{-} \qquad O^{-$	1.9	2.9	2.4	2.1	1.9	
Ph Ph $O-S^{+}$ $S^{-}Ph$ $S^{+}Ph$ $S^{+}Ph$ Me Me $CYCLICS_OSPh2 \Delta G(AX - EQ)$	1.8	1.8	0.3	2.5	1.1	
$\begin{array}{c} & & Ph \\ & & Ph \\ & & S^{+} \\ & & & S^{+} \\ & & & Me \\ CYCLICS_SPh2 \ \Delta G(AX - EQ) \end{array}$	3.4	2.9	-0.1	4.2	-0.1	
$Me Me Me CYCLICS_Off \Delta G(AX - EQ)$	0.4	0.3	-1.2	0.9	0.8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.2	-0.8	-1.4	-1.1	-2.0	

Table S4. Gas phase energy calculations for selected axial-equatorial equilibria^[a]

[a] free energies at 213 K in kcal mol⁻¹.

Optimisation method		B	3LYP/6-31G*		M06/6-31G*
Single point energy calculation	B3LYP/6-31G*	B3LYP/6-311+G**	M06/6-311+G**	MPWB95/AUG-CC-PVTZ	M06/6-31G*
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \end{array}$	-0.2	0.4	-0.4	-0.2	-0.9
$MeO \qquad MeO O^{-}$ $V = O \qquad V $	2.2	3.2	2.7	2.4	1.8
$\begin{array}{c} Ph \\ Ph \\ S \\ S \\ O \\ O \\ Me \\ CYCLICS \\ OSPh2 \\ \Delta G(AX - EQ) \end{array} \xrightarrow{Ph} Ph \\ O \\ Me $	1.8	1.8	0.3	2.5	0.5
$\begin{array}{c} & & & Ph \\ & & Ph \\ & & & Ph \\ & & & S^{+} \\ & & & & O \\ & & Me \\ & & Ph \\ & & & Me \\ & & CYCLICS_SPh2 \ \Delta G(AX - EQ) \end{array}$	2.8	2.4	-0.7	3.6	0.7
$ \begin{array}{c} OTf \\ & & \\ & \\ O \\ & \\ O \\ & \\ O \\ & \\ O \\ & \\ \\ O \\ & \\ \\ \\ \\$	1.1	1.0	-0.5	1.7	-0.2
$ \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & &$	-0.4	0.0	-0.6	-0.3	-0.9

 Table S5. Dichloromethane solution energy calculations for selected axial-equatorial equilibria (IEFPCM(UAKS)+B3LYP method)
 [a]

[a] free energies at 213K (gas phase) with default settings for solvation free energy using UAKS radii in dichloromethane in kcal mol⁻¹.

Optimisation method		B3	LYP/6-31G*		M06/6-31G*
Single point energy calculation	B3LYP/6-31G*	B3LYP/6-311+G**	M06/6-311+G**	MPWB95/AUG-CC-PVTZ	M06/6-31G*
$\Delta G(AX - EQ) \text{ sulfoxide 1} \xrightarrow{O^-}_{O^+} \xrightarrow{O^-}_{O^+} \xrightarrow{O^-}_{O^+} \xrightarrow{O^-}_{O^+}$	-0.3	0.2	-0.6	-0.3	-1.1
$\begin{array}{c} MeO & MeOO^{-} \\ \hline & & & \\ & $	1.6	2.6	2.1	1.7	1.2
$\begin{array}{c} Ph \\ Ph \\ S^{+} \\ S^{-} \\ O \\ Me \\ CYCLICS_OSPh2 \Delta G(AX - EQ) \end{array} \xrightarrow{Ph} \\ Me \\ M$	0.4	0.4	-1.1	1.2	-0.8
$\begin{array}{c} Ph \\ Ph \\ S^{+} \\ O \\ Me \\ CYCLICS_SPh2 \\ \Delta G(AX - EQ) \end{array} \xrightarrow{Ph \\ S^{+} \\ Me \\ Me \\ CYCLICS_SPh2 \\ \Delta G(AX - EQ) \end{array}$	1.1	0.6	-2.5	1.9	-1.1
$ \begin{array}{c} OTf \\ & \searrow \\ S^+ \\ O \\ Me \\ CYCLICS_Otf \Delta G(AX - EQ) \end{array} $	-1.1	-1.2	-2.7	-0.5	-2.4
$ \begin{array}{c} O^{-} \\ S^{+} \\ O \\ Me \\ CYCLICS_{O} \Delta G(AX - EQ) \end{array} $	-0.3	0.1	-0.5	-0.2	-0.8

 Table S6. Dichloromethane solution energy calculations for selected axial-equatorial equilibria (IEFPCM(BONDI)+B3LYP method)
 [a]

[a] free energies at 213K (gas phase) with default settings for solvation free energy using Bondi radii in dichloromethane in kcal mol⁻¹.

		•	
Ph2SC)		
B3LYP	geometry		
С	-1.986586	0.725761	0.843538
Ĉ	-3 070526	0.0331/3	1 38/60/
č	-3.070320	4 4 9 5 9 7 9	0.704004
C	-3.543441	-1.1258/9	0.764180
С	-2.939768	-1.591857	-0.406366
С	-1.857446	-0.903311	-0.957081
С	-1 382127	0 239285	-0.313117
ŝ	0.002158	1 100037	-1 020326
0	0.002130	0.500704	-1.023520
0	0.018442	2.532781	-0.310138
С	1.378593	0.218923	-0.321705
С	2.067878	0.757645	0.761546
С	3.152021	0.056252	1.292377
Ĉ	3 5/0220	-1 163/56	0 733827
č	0.040220	4 00000	0.755027
	2.849647	-1.683880	-0.363939
С	1.766702	-0.988376	-0.903359
Н	-1.607536	1.640667	1.289670
Н	-3.549430	0.400234	2.288447
Н	-4 390177	-1 660575	1 185837
 Ц	2 217416	2 404702	0.907000
	-3.317410	-2.404793	-0.697099
Н	-1.398207	-1.251839	-1.879054
Н	1.750418	1.716394	1.161141
Н	3.696191	0.464414	2.139937
н	4 387005	-1 705013	1 146528
ц	3 150005	-2 627080	-0.805071
11	1 00000	-2.027003	4 700455
н	1.236993	-1.384744	-1.766155
M06	Geometry		
С	-1.923007	0.656522	0.876668
С	-2.953688	-0.120494	1.394287
Ĉ	-3 301735	-1 2/8186	0 705477
ĉ	2 000202	1.240100	0.100411
	-2.000303	-1.601499	-0.506537
C	-1.779738	-0.828534	-1.036169
С	-1.343015	0.283273	-0.326759
S	-0.000025	1.321264	-0.977407
0	0 000103	2 573194	-0 148406
č	1 3/2000	0.283160	-0.326835
č	1.042330	0.200100	-0.320033
C	1.923168	0.656592	0.876448
С	2.953874	-0.120382	1.394073
С	3.391751	-1.248237	0.705411
С	2.808200	-1.601728	-0.508450
Ċ	1 779514	-0.828800	-1 036091
ц Ц	1.770014	1 55 17 10	1.000001
	-1.500044	1.004740	0.000000
н	-3.420240	0.155798	2.338366
Н	-4.200453	-1.852323	1.112787
Н	-3.161017	-2.477600	-1.049870
Н	-1.324832	-1.088374	-1.993068
Н	1 561105	1 554048	1 375035
 Ц	2 120525	0 156067	2 220052
	3.420000	0.100007	2.330033
н	4.200491	-1.852357	1.112/00
Н	3.160705	-2.477945	-1.049677
Н	1.324459	-1.088857	-1.992859

8

Ph2SOSPh2_CONF_7				
B3LYF	²/6-31G*Geo	metry		
С	-3.007121	1.192914	-2.032208	
С	-3.819542	2.319167	-2.162777	
С	-3.937311	3.223212	-1.104766	
Ĉ	-3 243267	3 016000	0.095386	
č	-2 440114	1 801181	0.258576	
č	2.440114	0.096902	0.230370	
	-2.344141	0.900092	-0.011779	
3	-1.365255	-0.501491	-0.739556	
C	-2.112347	-1.635602	0.394042	
C	-2.971595	-1.252462	1.438847	
С	-3.510925	-2.246850	2.246553	
С	-3.203586	-3.593870	2.011904	
С	-2.355581	-3.963392	0.962063	
С	-1.803920	-2.987343	0.139261	
0	0.000066	-0.003818	0.187054	
S	1.384300	0.499037	-0.736714	
Ĉ	2 347357	-0.986989	-0.810045	
Ĉ	2 442078	-1 894231	0 257832	
ĉ	3 2/0/82	-3 015078	0.00/253	
č	2 0/9772	2 217297	1 102927	
	3.940772	-3.217207	-1.103027	
	3.832150	-2.310329	-2.159450	
C	3.015681	-1.18/031	-2.028481	
C	2.108089	1.634027	0.398404	
С	1.807887	2.986130	0.136281	
С	2.357157	3.962621	0.960290	
С	3.193947	3.592915	2.018945	
С	3.492673	2.245263	2.261294	
С	2.956028	1.250550	1.452254	
Н	-2.901295	0.493027	-2.856223	
н	-4.349453	2,491795	-3.093889	
Н	-4 565597	4 101589	-1 215770	
н	-3 331236	3 733429	0 905229	
н	-1 885084	1 73/121	1 177560	
 Ц	2 222500	0.212000	1 602197	
	-3.232309	1 07/621	2 05 4619	
	-4.102102	-1.974021	3.054010	
	-3.040012	-4.300771	2.044162	
н	-2.138135	-5.010217	0.776625	
н	-1.160413	-3.266252	-0.690119	
Н	1.882883	-1.742014	1.175098	
Н	3.336612	-3.735634	0.902212	
Н	4.580261	-4.093321	-1.215137	
Н	4.366087	-2.478398	-3.089094	
Н	2.910734	-0.484991	-2.850777	
Н	1.172771	3.264960	-0.699556	
Н	2.146329	5.009775	0.769148	
н	3.628926	4.360021	2.652385	
н	4 155147	1 972823	3 076508	
н	3 210423	0 211322	1 621635	
M06/6	-31C*Coome	0.211022	1.021000	
000/0	2 062446		0 404007	
Č	2.903440		-2.131821	
	3.185225	-2.084540	-2.325086	
C	3.906372	-3.044185	-1.324287	
C	3.209874	-2.918194	-0.119623	
С	2.396383	-1.818341	0.105878	
С	2.295750	-0.859610	-0.909610	
S	1.311426	0.590559	-0.737779	

С	2.026949	1.639755	0.469243	0	-0.594230	-0.268916
С	2.966392	1.201631	1.409556	S	-1.877715	-1.377460
С	3.469248	2.128358	2.308417	0	-1.556839	-2.062874
С	3.043970	3.457216	2.261003	0	-2.126293	-2.014131
С	2.115914	3.881920	1.310304	С	-3.221104	-0.092429
С	1.602256	2.975523	0.397170	F	-3.456807	0.593302
0	0.000094	0.000074	0.184596	F	-2.768751	0.714193
S	-1.311069	-0.590668	-0.737718	F	-4.297336	-0.737389
С	-2.295534	0.859395	-0.909828	Н	-0.587231	2.485939
С	-2.396385	1.818202	0.105558	Н	-0.094877	4.862523
С	-3.210104	2.917861	-0.120070	Н	1.687748	5.434764
С	-3.906610	3.043586	-1.324752	Н	2.988712	3.643853
С	-3.785242	2.083861	-2.325449	Н	2.522545	1.264843
С	-2.963247	0.980009	-2.132059	Н	1.603143	-1.001069
С	-2.026796	-1.639599	0.469420	Н	3.535190	-2.523617
С	-1.602629	-2.975535	0.397398	Н	4.815338	-3.369027
С	-2.116591	-3.881658	1.310642	Н	4.165594	-2.719815
С	-3.044385	-3.456513	2.261396	Н	2.227136	-1.214504
С	-3.469107	-2.127475	2.308774	M06/6	-31G*Geome	try
С	-2.965953	-1.201020	1.409800	С	0.131554	2.676496
Н	2.849133	-0.229676	-2.912724	С	0.592890	3.961953
Н	4.321382	-2.198591	-3.263753	С	1.961461	4.225739
Н	4.545860	-3.908960	-1.485349	С	2.880850	3.206679
Н	3.309301	-3.681983	0.648001	С	2.444918	1.906842
Н	1.839228	-1.712600	1.035828	С	1.072208	1.661515
Н	3.315883	0.172112	1.423255	S	0.450103	0.057514
Н	4.206117	1.817538	3.044634	С	1.700427	-1.095381
Н	3.454592	4.175563	2.967210	С	2.326681	-1.080078
Н	1.808826	4.923864	1.272176	С	3.249537	-2.074032
Н	0.898045	3.297458	-0.369436	С	3.533303	-3.053295
Н	-1.839221	1.712682	1.035526	С	2.890851	-3.062059
Н	-3.309705	3.681700	0.647482	С	1.949788	-2.084624
Н	-4.546294	3.908199	-1.485904	0	-0.637331	-0.087979
Н	-4.321416	2.197693	-3.264132	S	-1.925748	-1.157061
Н	-2.848768	0.229129	-2.912882	0	-1.603691	-2.004863
Н	-0.898641	-3.297823	-0.369265	0	-2.250217	-1.601377
Н	-1.809949	-4.923735	1.272544	С	-3.173810	0.107288
Н	-3.455253	-4.174646	2.967677	F	-3.371409	0.958990
Н	-4.205768	-1.816302	3.045049	F	-2.667151	0.732836
Н	-3.314994	-0.171341	1.423455	F	-4.272778	-0.521077

-0.848002

Ph2S B3LY	OTf_CONF_20 ′P/6-31G*Geom	etry
С	0.188001	2.743333
С	0.465559	4.075712
C	1 460622	1 202006

С	0.465559	4.075712	-0.555934
С	1.469623	4.393886	0.362891
С	2.205088	3.385640	0.996625
С	1.942164	2.046752	0.723865
С	0.927580	1.742369	-0.194889
S	0.482255	0.088888	-0.649107
С	1.846568	-0.989292	-0.284353
С	2.184418	-1.352719	1.026607
С	3.261080	-2.216868	1.209331
С	3.978856	-2.694855	0.106760
С	3.617737	-2.330042	-1.191924
С	2.532595	-1.479879	-1.402822

	-0.594230 -1.877715 -1.556839 -2.126293 -3.221104 -3.456807	-0.268916 -1.377460 -2.062874 -2.014131 -0.092429 0.593302	0.614499 0.285530 -0.952204 1.556222 -0.059932
F	-2.768751	0.714193	-1.023637
F	-4.297336	-0.737389	-0.464962
Н	-0.587231	2.485939	-1.563591
Н	-0.094877	4.862523	-1.050219
Н	1.687748	5.434764	0.581462
Н	2.988712	3.643853	1.701623
Н	2.522545	1.264843	1.199524
Н	1.603143	-1.001069	1.872386
Н	3.535190	-2.523617	2.213713
H	4.815338	-3.369027	0.262759
Н	4.165594	-2.719815	-2.043632
H	2.227136	-1.214504	-2.410720
M06	/6-31G^Geometi	ry 0.070400	0.040000
	0.131554	2.676496	-0.040936
	0.092090	3.901903	0.199009
	2 880850	3 206679	-0.012062
c.	2.000000	1 906842	-0.242536
c C	1 072208	1 661515	-0 234349
ŝ	0 450103	0.057514	-0.685101
č	1.700427	-1.095381	-0.266889
Ĉ	2.326681	-1.080078	0.986296
С	3.249537	-2.074032	1.262872
С	3.533303	-3.053295	0.307191
С	2.890851	-3.062059	-0.927708
С	1.949788	-2.084624	-1.222929
0	-0.637331	-0.087979	0.597088
S	-1.925748	-1.157061	0.389389
0	-1.603691	-2.004863	-0.730993
0	-2.250217	-1.601377	1.710871
C	-3.173810	0.107288	-0.163163
F	-3.3/1409	0.958990	0.812835
	-2.667151	0.732836	-1.214935
	-4.2/2//8	-0.521077	-0.483225
	-0.930000	2.400070	-0.051200
н	2 313151	5 238525	0.374104
н	3 946961	3 419264	-0 009446
н	3 163716	1 111701	-0 425194
Н	2.081078	-0.318453	1.724480
Н	3.747488	-2.094611	2.229044
Н	4.260753	-3.828634	0.537055
Н	3.109642	-3.838447	-1.656013
Н	1.413572	-2.090625	-2.170670

Ph2	Ph2SOTf2_CONF15					
B3L'	YP/6-31G*Geom	etry				
F	-4.818562	0.831425	0.628637			
С	-4.478531	-0.015131	-0.342120			
F	-4.192170	-1.206957	0.189554			

F	-5.493563	-0.146531	-1.195813	С
S	-2.997514	0.635955	-1.279844	С
0	-2.600259	-0.410907	-2.224637	С
0	-3.350101	1.966579	-1.753940	Н
0	-1.985622	0.702928	-0.058473	Н
S	-0.117295	0.163168	-0.400209	Н
0	1.727773	-0.321699	-0.949801	Н
S	2.982028	-0.829395	-0.129706	н
Õ	3.096664	-0.151654	1.163445	H
Õ	3.130865	-2.277238	-0.211978	H
č	4 304524	-0.094658	-1 231150	H
F	4 141778	1 232009	-1 328533	H
F	5 495538	-0.345493	-0.685983	H
F	4 249249	-0 632780	-2 446725	••
Ċ	0.382326	1 536576	0.666493	
C C	1 347475	2 407530	0 157802	
C C	1 690387	3 534295	0.903668	
č	1.030307	3 780074	2 131832	
č	0 105065	2 002034	2.101002	
č	-0.25731/	1 77/033	1 8860/1	
č	-0.207014	-1 206325	0.635307	
č	-0.343003	-2.312504	0.053557	Ph2S
Č	1 207661	2 /02591	0.003333	B3LV
Č	-1.297001	-3.493301	0.779004	F
Č	-0.709943	-3.031900	2.030747	, C
Č	0.007043	-2.030230	2.000209	E
	0.203371	-1.430407	1.004992	F
	1.040722	2.199970	-0.703330	I C
	2.444402	4.213143	0.021101	0
	0.201261	4.000411	2.700740	0
	1 024464	3.097576	2.270070	Ő
	-1.034404	1.111900	2.244941	e e
п	-1.576426	-2.177582	-0.910210	3
	-1.090931	-4.290100	0.349037	C
	-0.650907	-4.377317	2.30/314	C
	0.039000	-2.730077	3.332/03	C
	0.901024	-0.004421	2.291042	C
		y 0.661001	0 696970	C
Г С	-4.090337	0.001991	0.000270	C
E E	-4.273960	-0.290598	-0.127155	C
F	-3.724331	-1.264461	0.579414	C
F	-5.294089	-0.767262	-0.816572	
5	-3.046295	0.400085	-1.314176	C
0	-2.535300	-0.715557	-2.091808	
0	-3.691905	1.523608	-1.950932	C
0	-1.9/218/	0.882707	-0.274251	0
S	-0.152967	0.310154	-0.547928	S
0	1.68/46/	-0.229196	-0.955065	C
S	2.775208	-0.789735	0.019910	C
0	2.945427	0.061860	1.185352	C
0	2.675994	-2.226272	0.175493	C
C	4.230417	-0.468284	-1.067538	C
F	4.298282	0.824305	-1.355101	C
F	5.321476	-0.828032	-0.414992	С
F	4.132870	-1.162287	-2.184743	С
С	0.351736	1.791194	0.351924	С
С	1.416868	2.513668	-0.177450	С
С	1.782191	3.706376	0.433247	С
С	1.093211	4.162477	1.550926	С
С	0.023158	3.433396	2.059877	Н
С	-0.364971	2.243680	1.458059	Н
С	-0.330980	-1.027188	0.631638	Н
С	-0.768770	-2.225380	0.069719	Н
С	-0.842073	-3.346754	0.882856	Н

-0.470249	-3.265079	2.221067
-0.022315	-2.062540	2.757204
0.059398	-0.925960	1.962633
1.967600	2.141693	-1.036457
2.615862	4.276685	0.030615
1.387858	5.095632	2.026511
-0.524491	3.794005	2.927669
-1.226338	1.695480	1.827845
-1.057754	-2.270992	-0.978745
-1.182964	-4.290675	0.464187
-0.517392	-4.151478	2.850227
0.286452	-2.007556	3.798445
0.463297	-0.000401	2.363969

Ph2 B3L	SOTfOSPh2_CC	DNF9	
F	5 109153	0 865630	-1 418700
Ċ	4 285895	-0.068910	-1 866445
F	3 177188	0.000010	-2 355094
F	4 871457	-0.802613	-2 798960
S	3 791410	-1 200749	-0 450240
õ	2 851316	-2 180566	-0.978263
õ	4.973430	-1.544940	0.308405
Õ	2.961177	-0.109565	0.483528
ŝ	1.204687	0.060712	0.198263
Č	0.691426	-0.752667	1.713422
Č	0.197165	-0.053826	2.818556
Ċ	-0.193528	-0.778624	3.945123
C	-0.096286	-2.171262	3.957360
С	0.384155	-2.854931	2.836970
С	0.775833	-2.151832	1.699893
С	1.226469	1.829832	0.516559
С	2.020662	2.358217	1.543960
С	2.089613	3.742414	1.684941
С	1.387762	4.576645	0.809832
С	0.613401	4.031857	-0.216078
С	0.527538	2.649008	-0.376731
0	-1.038805	0.152518	-0.521276
S	-2.354828	-0.097015	0.278055
С	-3.527445	1.140618	-0.305917
С	-4.215061	1.876777	0.661039
С	-5.124120	2.853630	0.247205
С	-5.321219	3.089622	-1.113644
С	-4.614448	2.353007	-2.071619
С	-3.712100	1.370101	-1.673316
С	-3.044008	-1.612785	-0.438998
С	-2.415927	-2.203575	-1.533712
С	-2.948238	-3.386744	-2.051489
С	-4.082823	-3.959462	-1.473972
C	-4.692888	-3.357066	-0.369842
С	-4.171812	-2.177765	0.161171
н	0.115420	1.026475	2.807830
н	-0.572156	-0.249109	4.813932
H	-0.397735	-2.726078	4.840629
Н	0.456875	-3.937839	2.845333
Н	1.1555/1	-2.678556	0.829799

Н	2.589354	1.710129	2.200551
Н	2.700822	4.167451	2.474948
Н	1.452230	5.654457	0.924621
Н	0.075635	4.681442	-0.899510
Н	-0.082780	2.213605	-1.158021
Н	-4.047174	1.691819	1.718513
Н	-5.671519	3.429282	0.987339
Н	-6.027705	3.850140	-1.432699
Н	-4.773461	2.541919	-3.129095
Н	-3.162737	0.788220	-2.406804
Н	-1.529605	-1.746570	-1.960831
Н	-2.473124	-3.859720	-2.905850
Н	-4.490855	-4.880067	-1.880303
Н	-5.571903	-3.807145	0.081532
Н	-4.642691	-1.708039	1.020849
M06/6-	-31G*Geometry		
F	5.284758	1.080438	-0.513667
С	4.522295	0.526743	-1.425721
F	3.524908	1.341195	-1.737386
F	5.214947	0.223733	-2.496623
S	3.793471	-1.033024	-0.741532
Õ	2.921813	-1.592245	-1.749985
Õ	4 823305	-1 766642	-0.063282
õ	2 871515	-0.353417	0 431248
ŝ	1 214960	0.033066	0.018527
Ĉ	0 478840	-1 336753	0 894678
č	0.032844	-1 259221	2 210918
Č	-0.563298	-2.384121	2 771189
C C	-0 723892	-3 542981	2 017226
č	-0 285289	-3 594842	0.696266
Ĉ	0.321207	-2 487687	0 120432
C C	1 186599	1 462540	1 096196
Č	1 884578	1 453154	2 306203
Č	1 911911	2 617393	3 062044
C C	1 267615	3 765759	2 608100
C C	0.593058	3 762014	1 391521
C C	0.548315	2 607776	0.619080
õ	-0.932640	0 454411	-0.694523
S	-2 168142	0 375214	0.231527
C C	-3 324335	1 551411	-0 482387
C	-4 434387	1 905990	0.402007
C C	-5.346849	2 807051	-0.257067
C C	-5 133874	3 343608	-1 524390
C C	-4 011585	2 983060	-2 264937
C C	-3 092397	2.000000	-1 747445
C C	-2 957608	-1 181320	-0 185827
C C	-2 811629	-1 706956	-1 465285
C C	-3 401552	-2 931826	-1 748789
C C	-4 122485	-3 606512	-0 764030
C	-4 257075	-3.066103	0.704030
C	-3.66/002	-1.8/2002	0.910040
н	0 130887	-0.342932	2 788227
н	-0.008867	-2 3/8716	3 801830
н	-1 100136	-4 414401	2 462587
н	-0 425036	-4 407675	0 106385
н	0.668368	-2 5122/6	-0 012215
Н	2 417673	0 565070	2 630600
Н	2.417073	2 628020	2.003033
н	1 299689	4 673001	3 205809
н	0 102340	4 663043	1 033769
Н	0.015257	2 587714	-0 328492
н	-4 585615	1 485537	1 272640
Н	-6.222429	3.096149	0.319838

Н	-5.848125	4.053241	-1.936302
Н	-3.851317	3.408746	-3.253207
Н	-2.205838	1.783669	-2.306495
Н	-2.229031	-1.169023	-2.211928
Н	-3.302117	-3.363281	-2.742628
Н	-4.583501	-4.564698	-0.994557
Н	-4.818029	-3.598789	1.275447
Н	-3.745650	-1.414652	1.811109

		• •	
Tf2C	CONF_8		
B3L	YP/6-31G*Geom	netry	
F	3.572202	-0.074402	-0.690226
С	2.542949	0.413899	-0.007663
F	2.903528	0.689385	1.236703
F	2.069290	1.501175	-0.602555
S	1.208532	-0.915011	0.014838
0	0.839295	-1.228047	-1.349549
0	1.567723	-1.910127	1.001873
0	0.000004	0.000015	0.773661
S	-1.208545	0.915024	0.014840
0	-1.567757	1.910125	1.001881
0	-0.839319	1.228072	-1.349546
С	-2.542936	-0.413912	-0.007664
F	-3.572188	0.074368	-0.690246
F	-2.069249	-1.501184	-0.602540
F	-2.903521	-0.689388	1.236702
M06	/6-31G*Geomet	ry	
F	3.524466	-0.097496	-0.660324
С	2.494068	0.412209	-0.020104
F	2.826511	0.733786	1.208150
F	2.028542	1.461690	-0.660227
S	1.184261	-0.904609	0.028806
0	0.797281	-1.218170	-1.318795
0	1.562840	-1.881013	1.011180
0	0.000000	0.000002	0.783085
S	-1.184262	0.904610	0.028804
0	-1.562844	1.881014	1.011178
0	-0.797280	1.218171	-1.318796
С	-2.494067	-0.412210	-0.020107
F	-3.524465	0.097494	-0.660329
F	-2.028540	-1.461690	-0.660229
F	-2.826512	-0.733787	1.208147

		•	
TRIF	LATE_1		
B3L1	P/6-31G*Geom	netry	
0	-1.244086	-0.505285	1.354999
S	-0.926202	0.000005	0.000077
0	-1.244628	-0.920708	-1.114927
0	-1.244065	1.426087	-0.239770
С	0.941476	-0.000063	-0.000046
F	1.445825	-1.237167	0.207074

F	1.445358	0.439092	-1.175143
F	1.445774	0.798024	0.967694
M06/6	3-31G*Geomet	ry	
0	1.223084	1.323287	-0.558612
S	0.912641	0.000310	-0.000088
0	1.224401	-1.144754	-0.866283
0	1.224187	-0.177522	1.424692
С	-0.929135	-0.000112	0.000117
F	-1.422614	0.150523	-1.234524
F	-1.421124	-1.145299	0.486474
F	-1.423020	0.993402	0.748308

S-S-0 `Ph

EQ SULFOXIDE 1 c1				
B3LYP	/6-31G*Geome	try		
0	-0.064473	1.402136	-0.015531	
С	1.251791	1.951270	0.099027	
С	2.096623	1.606116	-1.127990	
С	2.112220	0.086475	-1.357893	
С	0.687465	-0.472589	-1.363745	
Ĥ	0.141372	-0.074491	-2.236365	
С	-0.043934	-0.003855	-0.092778	
Ĥ	0 409480	-0 454146	0.806036	
S	-1 827036	-0 525594	-0 116169	
õ	-2.389161	-0 437269	1 282118	
C C	-1 400922	-2 306834	-0 413574	
Ĉ	-0 /0/230	-2 525/68	-1 636533	
н	-0.986306	-2 096937	-2 525588	
$\hat{\mathbf{C}}$	-0.258860	-4.004084	-2.525500	
C C	0.230009	-4.004904	-1.070710	
Ĉ	0.793010	-4.073907	1 422705	
	0.97 1920	-0.044303	-1.423703	
	0.090337	-0.702000	-2.242937	
	-0.952748	-0.100683	-2.879526	
	-1.126922	-4.728453	-2.696041	
0	0.766683	-1.886966	-1.449106	
н	1.110843	3.029981	0.205869	
Н	1.729239	1.572141	1.017422	
Н	1.671857	2.113666	-2.003324	
Н	3.117966	1.984147	-0.996914	
Н	2.607548	-0.171402	-2.300424	
Н	2.668547	-0.413215	-0.553388	
Н	-0.923448	-2.678962	0.499396	
Н	-2.360322	-2.819008	-0.534683	
Н	1.479042	-4.112270	-0.608643	
Н	1.796374	-6.552579	-0.930294	
Н	0.238931	-7.830213	-2.388344	
Н	-1.632747	-6.649381	-3.525624	
Н	-1.941832	-4.215547	-3.203073	
M06/6-	31G*Geometry			
0	3.356514	0.280037	-0.068856	
С	4.029072	-0.900822	0.336685	
С	3.452058	-2.116473	-0.365992	
С	1.950786	-2.198188	-0.114489	
Ĉ	1.282979	-0.881389	-0.465395	
H	1 383431	-0 692817	-1 554996	
C	2 002301	0 249023	0 268107	
н	1 850870	0 158279	1 363624	
S	1 340954	1 898203	-0 218339	
õ	1 765686	2 894843	0.813315	
-		2.00 1010	0.010010	

С	-0.382594	1.409786	0.197400
С	-0.838779	0.146724	-0.524929
Н	-0.709150	0.292921	-1.616864
С	-2.290421	-0.121107	-0.234962
С	-2.668500	-0.845536	0.894445
С	-4.014934	-1.043890	1.177032
С	-4.992841	-0.513979	0.340784
С	-4.619507	0.215415	-0.783197
С	-3.272797	0.408535	-1.069028
0	-0.075555	-0.968142	-0.112680
Н	5.085088	-0.744258	0.091935
Н	3.943935	-1.013373	1.434019
Н	3.647524	-2.025429	-1.444961
Н	3.955554	-3.028906	-0.019800
Н	1.480974	-3.009551	-0.685155
Н	1.752837	-2.397945	0.951355
Н	-0.424899	1.272664	1.288286
Н	-1.012039	2.269552	-0.064924
Н	-1.898337	-1.265319	1.538882
Н	-4.302532	-1.618086	2.056266
Н	-6.046508	-0.673025	0.563402
Н	-5.378412	0.628143	-1.445579
Н	-2.977694	0.973394	-1.955056

 $\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 0^{-} \\ S^{+} \\ Ph \end{array}$

AX_	SULFOXIDE_1_	_c1	
B3L`	YP/6-31G*Geom	netry	
0	-0.064177	1.389467	0.051837
С	1.259164	1.926730	0.155502
С	2.089130	1.609154	-1.088247
С	2.114619	0.093593	-1.341494
С	0.689914	-0.457951	-1.361263
Н	0.141838	-0.063954	-2.230093
С	-0.060116	-0.006616	-0.103099
Н	0.346332	-0.517710	0.787122
S	-1.857351	-0.502667	-0.225713
0	-2.365846	-0.048045	-1.578378
С	-1.426147	-2.300517	-0.419116
С	-0.500402	-2.522720	-1.627535
Н	-0.997504	-2.087910	-2.506726
С	-0.260610	-4.001626	-1.856369
С	0.847224	-4.650808	-1.299164
С	1.027676	-6.021802	-1.486770
С	0.101957	-6.760090	-2.226230
С	-1.004864	-6.117848	-2.784672
С	-1.182045	-4.746153	-2.602873
0	0.758099	-1.879555	-1.424285
Н	1.125088	3.003086	0.291214
Н	1.749042	1.522819	1.057664
Н	1.648133	2.127050	-1.949023
Н	3.107716	1.996054	-0.960966
Н	2.615097	-0.147536	-2.285886
Н	2.670841	-0.414957	-0.541907
Н	-0.963511	-2.656208	0.508019
Н	-2.382310	-2.813411	-0.559059
Н	1.572657	-4.072692	-0.736723
Н	1.895851	-6.513701	-1.055623
Н	0.244816	-7.827522	-2.371669

Н	-1.725977	-6.682045	-3.370151	С	-1.038739
Н	-2.039734	-4.247908	-3.050325	С	-1.242694
M06/6·	-31G*Geometry			0	0.732866
0	-3.365913	0.359154	-0.372147	Н	1.198412
С	-4.055488	-0.880267	-0.420094	Н	1.755879
С	-3.551139	-1.830504	0.649748	Н	1.768448
С	-2.047339	-2.028542	0.501154	Н	3.192369
С	-1.353026	-0.681189	0.484871	Н	2.636050
Н	-1.481772	-0.172056	1.458766	Н	2.655446
С	-1.996134	0.204658	-0.572764	Н	-0.999484
Н	-1.762271	-0.188101	-1.584353	Н	-2.411563
S	-1.299726	1.918475	-0.478835	Н	-1.181327
0	-1.361572	2.332627	0.963198	Н	0.441137
С	0.418661	1.305156	-0.744113	Н	-0.434311
С	0.804806	0.283914	0.321920	Н	1.754715
Н	0.633592	0.753704	1.308042	Н	2.121585
С	2.256261	-0.082094	0.177305	Н	0.332176
С	2.650797	-1.196182	-0.560908	Н	-1.825428
С	4.002307	-1.478621	-0.729761	Н	-2.181554
С	4.968604	-0.648444	-0.171425	M06/6	-31G*Geor
С	4.578499	0.466435	0.564342	0	-3.460487
С	3.228475	0.745228	0.738699	С	-4.105199
0	0.015325	-0.883939	0.206609	С	-3.541278
Н	-5.115439	-0.637455	-0.289122	С	-2.031748
Н	-3.927567	-1.332510	-1.422746	С	-1.394311
Н	-3.777505	-1.401864	1.637272	Н	-1.531272
Н	-4.082076	-2.789332	0.579410	С	-2.094391
Н	-1.631718	-2.648402	1.306014	Н	-1.905893
Н	-1.821855	-2.540152	-0.449429	S	-1.464262
Н	0.500532	0.871364	-1.751025	0	-1.844531
Н	1.061147	2.192769	-0.686894	С	0.273035
Н	1.890392	-1.847912	-0.986012	С	0.761785
Н	4.301956	-2.355346	-1.301975	0	0.663607
Н	6.025608	-0.871878	-0.305821	С	1.051705
Н	5.328081	1.117686	1.010730	С	2.189406
Н	2.920086	1.613861	1.323372	С	2.489105

EQ_SULFOXIDE_2_c1 B3LYP/6-31G*Geometry

		5	
0	-0.023554	1.383836	0.065420
С	1.306432	1.881550	0.233524
С	2.161508	1.581525	-0.998424
С	2.130375	0.078278	-1.317396
С	0.686237	-0.424922	-1.381177
Н	0.168646	0.042311	-2.229436
С	-0.049789	-0.015460	-0.095980
Н	0.370045	-0.532489	0.783382
S	-1.847545	-0.476168	-0.179373
0	-2.415050	-0.466972	1.220223
С	-1.447872	-2.254416	-0.542728
С	-0.519042	-2.486250	-1.745993
0	-1.216470	-1.956265	-2.860572
С	-0.547910	-2.054447	-4.118733
С	-0.237035	-3.982887	-1.890838
С	0.973897	-4.549688	-1.480164
С	1.175764	-5.927412	-1.583593
С	0.172478	-6.750777	-2.095562

С С О Н Н Н	-1.038739 -1.242694 0.732866 1.198412 1.755879 1.768448	-6.189612 -4.814429 -1.841312 2.956327 1.434430 2.153192	-2.506210 -2.402174 -1.558757 0.401357 1.135477 -1 848647
H H	3.192369 2.636050	1.916252 -0.138957	-0.829436 -2.265179
H H	2.655446 -0.999484	-0.485867 -2.657002	-0.534705 0.370291
H L	-2.411563 -1 181327	-2.743046	-0.703340
н	0.441137	-1.584320	-4.085660
Н	-0.434311	-3.097950	-4.433460
H	1.754715	-3.909358	-1.086625
H Ll	2.121585	-6.356516	-1.263351
п Н	0.332170 -1 825428	-7.022743	-2.174594
н	-2.181554	-4.376215	-2.729425
M06/	6-31G*Geomet	ry	
0	-3.460487	0.298416	-0.165963
C	-4.105199	-0.874788	-0.632312
C	-3.541278	-2.10/41/	0.051876
C C	-2.031740	-2.100094	-0.151052
н	-1.531272	-0.700123	1.348500
C	-2.094391	0.293998	-0.455787
Н	-1.905893	0.248714	-1.548519
S	-1.464262	1.928297	0.116272
0	-1.844531	2.947642	-0.912052
C C	0.273035	1.462012	-0.285929
0	0.663607	0.373558	1 743236
č	1.051705	-0.729866	2.537689
C	2.189406	-0.099283	-0.085984
С	2.489105	-1.019843	-1.086801
C	3.805849	-1.196742	-1.500716
C	4.829349	-0.456648	-0.919835
C C	4.533031	0.400070	0.078817
0 0	-0.018147	-0.929276	-0.057174
Ĥ	-5.171029	-0.736774	-0.421079
Н	-3.979862	-0.952337	-1.728910
Н	-3.774835	-2.052510	1.125655
H	-4.022984	-3.012883	-0.340696
п н	-1.572080	-2.989660	-1 21/800
Н	0.319874	1.388291	-1.381074
Н	0.892612	2.308872	0.030845
Н	0.866814	-0.442242	3.576198
Н	0.463470	-1.626992	2.297034
Н	2.117691	-0.966557	2.409370
n H	1.00/029	-1.000238 -1.920860	-1.03040/
H	5.858615	-0.598104	-1.244970
H	5.329512	1.047574	0.540642
Н	2.980252	1.361811	1.278138

AX_SULFOXIDE_2_c1 B3LYP/6-31G*Geometry

0	0.075326	1.256610	0.321911
С	1.418755	1.747146	0.358217
С	2.098253	1.603107	-1.002601
С	2.057534	0.137275	-1.458975
С	0.624994	-0.391701	-1.402931
Н	0.003362	0.092125	-2.166773
С	-0.000386	-0.098980	-0.038810
Н	0.440817	-0.756469	0.730734
S	-1.828921	-0.472981	-0.095990
0	-2.422523	0.324744	-1.228339
С	-1.526491	-2.234591	-0.627712
C	-0.560355	-2.472365	-1.810017
Õ	-1.244321	-2.008199	-2.952878
Ċ	-0.521595	-2.072692	-4.180548
Ĉ	-0 247458	-3.971322	-1 893221
č	0.940559	-4.508000	-1.385174
Ĉ	1 166433	-5 885078	-1 429510
Č	0 209058	-6 739105	-1 978540
C C	-0.978928	-6 208620	-2 485902
C C	-1 206456	-4 833544	-2 441544
õ	0.681244	-1 806787	-1 625417
н	1 336252	2 793532	0.663605
н	1 989231	1 205171	1 131625
н	1 576081	2 239815	-1 727415
н	3 134166	1 958462	-0.939613
н	2 455920	0.020669	-2 473340
н	2 679356	-0 479849	-0 795762
н	-1 154883	-2 748047	0 265329
Н	-2.512216	-2.635343	-0.875975
Н	-1.200072	-1.683757	-4.942402
Н	0.382843	-1.455063	-4.148401
Н	-0.238770	-3.102037	-4.431977
Н	1.687291	-3.843303	-0.966269
Н	2.095393	-6.289759	-1.036086
H	0.387354	-7.810585	-2.012596
Н	-1.728916	-6.865144	-2.919099
Н	-2.125334	-4.418334	-2.845606
M06/6-	31G*Geometrv		
0	-3.406975	0.104712	-0.771072
С	-4.014808	-1.168855	-0.633161
С	-3.581807	-1.844223	0.654125
С	-2.064293	-1.971817	0.676148
С	-1.429005	-0.617035	0.437243
Н	-1.618293	0.057553	1.290383
С	-2.016264	0.031431	-0.803487
Н	-1.642380	-0.490625	-1.709370
S	-1.464686	1.798245	-0.912951
0	-1.878783	2.461862	0.359832
С	0.321695	1.314676	-0.843574
С	0.763436	0.328686	0.243281
0	0.692122	1.028019	1.453017
С	0.982402	0.260430	2.601761
С	2.183472	-0.119517	-0.071643
С	2.443285	-1.319877	-0.729614
С	3.749399	-1.669971	-1.057049
С	4.804188	-0.823932	-0.733266

4.548271	0.378435	-0.080602
3.244273	0.730457	0.244882
-0.036655	-0.828769	0.260334
-5.094612	-0.987620	-0.661824
-3.748956	-1.800249	-1.503252
-3.923049	-1.235118	1.504149
-4.060072	-2.828938	0.742510
-1.696272	-2.389608	1.623371
-1.729563	-2.650361	-0.126106
0.543562	0.891723	-1.833821
0.878510	2.252833	-0.734432
0.981085	0.956862	3.444421
0.222767	-0.515562	2.773881
1.967139	-0.225355	2.531039
1.616949	-1.983106	-0.973201
3.942959	-2.613874	-1.564344
5.825931	-1.100516	-0.987871
5.369170	1.044778	0.179059
3.036960	1.665343	0.765460
	4.548271 3.244273 -0.036655 -5.094612 -3.748956 -3.923049 -4.060072 -1.696272 -1.729563 0.543562 0.878510 0.981085 0.222767 1.967139 1.616949 3.942959 5.825931 5.369170 3.036960	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

CYC	LICS_OSPh2_E	Q	
B3L C	2 559199	1 029104	0 645917
C c	-2.000100	-1.930194	-0.043017
3	-1.000040	-0.274371	-0.073090
	-2.702702	0.506361	0.000000
0	-0.331736	-0.527912	0.070900
5	1.166182	-0.098510	-0.882743
C	1.440053	1.570987	-0.404674
C	1.720081	2.433484	-1.482814
C	1.998333	3.771124	-1.207139
C	1.960098	4.235922	0.109885
C	1.640050	3.371931	1.169330
C	1.380112	2.028687	0.926024
C	2.288098	-1.178626	-0.092982
С	2.374246	-2.455444	-0.697913
С	3.266749	-3.383051	-0.179195
С	4.070493	-3.040461	0.916196
С	3.992029	-1.765821	1.497115
С	3.103447	-0.821706	1.001282
Н	-2.279249	-2.405049	0.302945
Н	-2.143387	-2.492324	-1.492355
Н	-2.511381	0.013071	1.595715
Н	-2.493490	1.562206	0.674744
Н	1.738424	2.067732	-2.505534
Н	2.234966	4.447855	-2.021753
Н	2.168741	5.281136	0.316928
Н	1.594275	3.752000	2.185073
Н	1.111801	1.360884	1.737924
Н	1.764742	-2.705645	-1.561670
Н	3.350246	-4.364797	-0.633679
Н	4.776342	-3.765329	1.310553
Н	4.636911	-1.508248	2.331004
Н	3.069821	0.172118	1.429326
С	-4.301736	0.315949	0.359285
С	-4.096393	-1.771529	-0.753517
0	-4.610680	-1.066747	0.348133

Ц	1 270127	1 201061	1 707262	\circ	0 620954	0 022702	0 16/000
	4.570157	2 776224	0 720527	0	1 000012	-0.022702	-0.104999
	-4.527500	-2.770334	-0.729037	3	-1.009013	0.202401	-0.905105
Н	-4.542885	0.763863	-0.617232	C	-1.933165	-1.140122	-0.308748
C	-5.124351	0.983895	1.455025	C	-2.647600	-1.867040	-1.282177
н	-4.933989	2.060637	1.488368	С	-3.447863	-2.928628	-0.863387
Н	-6.184842	0.826729	1.241365	С	-3.499216	-3.273810	0.489399
Н	-4.899975	0.544969	2.431718	С	-2.750467	-2.564588	1.442715
M06	/6-31G*Geometr	У		С	-1.962215	-1.487428	1.056697
С	-2.516393	-1.895949	-0.926747	С	-1.455702	1.715130	-0.218679
S	-1.718224	-0.283552	-0.701044	С	-1.027164	2.854554	-0.941951
С	-2.575291	0.229231	0.811025	С	-1.368334	4.114439	-0.470698
0	-0.239441	-0.722476	-0.093898	С	-2.136806	4.238462	0.694455
S	1,171094	-0.124679	-0.987420	Ċ	-2.574940	3,103387	1,393309
Ĉ	1 247292	1 542207	-0 469162	Ċ	-2 242115	1 831964	0 946894
č	1 391845	2 473421	-1 507964	н	2 868799	0 974363	-1 663084
č	1.001040	3 8107/2	-1 178510	н	1 328/68	-2 708/68	0.605256
ĉ	1 388340	1 21/262	0 153808	н Ц	-2 50/823	-1 600336	-2 333028
ĉ	1.300340	2 275122	1 176474		-2.394023	2 /000330	-2.333920
ĉ	1.210750	1 004050	0.070502		-4.020073	-3.400010	-1.595202
	1.142043	1.924000	0.070093		-4.110000	-4.100209	0.607940
	2.305050	-1.061512	-0.126599	н	-2.786126	-2.856823	2.487549
C	2.419174	-2.418778	-0.495045	н	-1.368677	-0.947689	1.787220
C	3.370747	-3.228304	0.097515	н	-0.453828	2.749940	-1.858815
C	4.273333	-2.683071	1.013498	Н	-1.053443	4.998399	-1.015527
С	4.231330	-1.327940	1.345110	Н	-2.413116	5.226002	1.051716
С	3.276255	-0.498656	0.780257	Н	-3.189330	3.215493	2.280764
Н	-2.203640	-2.526170	-0.084294	Н	-2.613311	0.958410	1.467349
Н	-2.159302	-2.307190	-1.877524	Н	2.912098	-2.840978	-0.207819
Н	-2.269640	-0.466402	1.604857	Н	3.902114	-0.479235	-1.655654
Н	-2.239057	1.248899	1.034322	С	3.747824	0.467593	0.315477
Н	1.450612	2.151115	-2.546818	С	2.933002	-1.447252	1.479920
Н	1.608203	4.560809	-1.962991	0	4.054830	-0.720515	1.034164
Н	1.448775	5.270999	0.405121	н	2.999937	1.055062	0.868491
H	1.132560	3.605235	2.209598	H	3.300512	-2.216100	2.165894
Н	1 004062	1 181881	1 663430	H	2 225889	-0 806449	2 025238
н	1 723967	-2 828965	-1 226727	C	5 035267	1 267293	0 157409
н	3 424193	-4 281862	-0 164077	н	5 425926	1 509115	1 149359
н	5 0318/6	-3 320080	1 /61712	н	5 701737	0.684456	-0.376803
Ц	4 056577	-0.01/500	2 0/1/2	н Ц	4 855002	2 202106	-0.382507
	2.264057	0.514033	2.041427	MOG	4.000992	2.202100	-0.302337
$\hat{\mathbf{C}}$	3.204937	0.505097	0.590216		2 194960	0 11/201	1 071012
ĉ	-4.102230	0.144492	0.00210	C S	3.104009	0.114301	-1.07 1913
	-4.030690	-1.071102	-0.913739	3	1.00/000	-0.922646	-0.962937
0	-4.402010	-1.109020	0.323064	C	2.114425	-1.953199	0.400147
н	-4.348418	-1.008623	-1.739847	0	0.629425	0.153053	-0.293833
Н	-4.510995	-2.645829	-1.075535	S	-0.973390	0.201993	-1.057013
Н	-4.383341	0.782786	-0.278704	С	-1.743204	-1.204217	-0.361657
С	-4.819330	0.601186	1.829168	С	-2.369520	-2.048881	-1.290237
Н	-4.587008	1.645655	2.063608	С	-3.022648	-3.179866	-0.817006
Н	-5.899029	0.514035	1.672801	С	-3.014991	-3.466230	0.545368
Н	-4.545779	-0.030808	2.682234	С	-2.356977	-2.630599	1.456595
				С	-1.717781	-1.485106	1.015161
				С	-1.553123	1.643855	-0.266825
		Ph		С	-1.054892	2.843009	-0.811286
		<i>i</i>		С	-1.505901	4.043176	-0.293820
		0—Ś+		Ċ	-2.462492	4.044480	0.724265
				Ċ	-2.974111	2.849501	1,233091
	\sim	<u>S</u> t Pn		č	-2.526384	1.633304	0.744832
	۰ ۱	۱ ۱		-			

Н

Н

Н

Н

Н

Н

Н

2.956314

1.195434

-2.359968

-3.529829

-3.520644

-2.352920

-1.200080

0.908894

-2.488316

-1.818166

-3.841306

-4.358189

-2.878618

-0.826429

CYCLICS_OSPh2_AX						
B3LYP/6-31G*Geometry						
С	3.180595	0.108043	-1.072307			
S	1.703293	-0.987924	-0.995220			
С	2.229640	-2.159672	0.315929			

-1.792918

0.725534

-2.354845

-1.514663

0.908805

2.515384

1.712415

-0.329891	2.830290	-1.624332
-1.130160	4.981559	-0.693508
-2.829981	4.991873	1.112788
-3.737561	2.869213	2.006537
-2.952235	0.704408	1.114492
2.841067	-2.676692	0.055986
3.939535	-0.555962	-1.513677
3.646392	0.625021	0.295789
2.717054	-1.124588	1.582543
3.873505	-0.463754	1.162712
2.869397	1.286623	0.719093
3.004472	-1.809830	2.388368
1.969799	-0.420502	1.986794
4.950005	1.371123	0.131978
5.284404	1.734308	1.108856
5.724636	0.705157	-0.266479
4.838808	2.230475	-0.538607
	-0.329891 -1.130160 -2.829981 -3.737561 -2.952235 2.841067 3.939535 3.646392 2.717054 3.873505 2.869397 3.004472 1.969799 4.950005 5.284404 5.724636 4.838808	-0.3298912.830290-1.1301604.981559-2.8299814.991873-3.7375612.869213-2.9522350.7044082.841067-2.6766923.939535-0.5559623.6463920.6250212.717054-1.1245883.873505-0.4637542.8693971.2866233.004472-1.8098301.969799-0.4205024.9500051.3711235.2844041.7343085.7246360.7051574.8388082.230475

CYCLICS_SPh2_EQ	
B3LYP/6-31G*Geometry	v

C	0 910725	2 77/021	0.840026
Č	0.010733	2.774031	0.640926
	1.299053	4.029126	0.510399
C C	2.392150	4.145665	-0.362380
C	3.008083	3.003154	-0.900237
C	2.531853	1.737391	-0.593441
C	1.426202	1.623878	0.280710
S	0.755404	0.119077	0.860568
С	1.708433	-1.260738	0.327628
С	2.075738	-1.503059	-1.012868
С	2.825744	-2.636785	-1.298852
С	3.204632	-3.515082	-0.269439
С	2.816505	-3.277880	1.052936
С	2.045988	-2.160576	1.363507
S	-1.309921	-0.266114	-0.593454
С	-2.603989	0.853859	0.048104
С	-1.950472	-1.848455	0.056508
Н	-0.011905	2.677717	1.544174
Н	0.847130	4.916559	0.941429
Н	2.778353	5.129730	-0.610800
Н	3.870834	3.107541	-1.550303
Н	3.032372	0.860225	-0.982715
Н	1.765587	-0.836642	-1.811298
Н	3.112939	-2.846131	-2.324492
Н	3.794172	-4.395327	-0.507414
Н	3.108675	-3.963421	1.841900
Н	1.741454	-1.971478	2.388788
Н	-2.568345	0.874442	1.140985
Н	-2.401646	1.843221	-0.369505
Н	-1.330938	-2.645067	-0.362874
Н	-1.894988	-1.847046	1.148707
С	-3.439175	-1.985793	-0.386622
С	-4.011730	0.318884	-0.402755
Н	-4.040169	0.256198	-1.499586
Н	-3.806574	-2.931205	0.023848
Н	-3.519842	-2.019011	-1.480922
0	-4.216361	-0.957837	0.168534
Č	-5.097362	1.260250	0.107125

Н	-4.975644	2.262090	-0.314539
Н	-6.070828	0.871101	-0.204348
Н	-5.081806	1.319780	1.199372
M06	/6-31G*Geometr	ry	
С	0.384213	2.750948	0.946400
С	0.691096	4.061580	0.626277
С	1.662955	4.329402	-0.340140
С	2.340900	3.291561	-0.989369
С	2.046644	1.972470	-0.695026
С	1.063316	1.713044	0.273635
S	0.614841	0.116349	0.822818
С	1.790200	-1.089823	0.307162
С	2.117071	-1.331851	-1.035615
С	3.061735	-2.306983	-1.310764
С	3.668933	-3.015072	-0.267920
С	3.322707	-2.772779	1.058407
С	2.361149	-1.817001	1.362450
S	-1.125498	-0.486418	-0.598155
С	-2.485762	0.574988	-0.004392
С	-1.660271	-2.060931	0.158677
Н	-0.343566	2.530055	1.727283
Н	0.190361	4.877432	1.141406
Н	1.909460	5.361458	-0.580584
Н	3.111331	3.519099	-1.721777
Н	2.595531	1.166814	-1.175208
Н	1.637389	-0.785229	-1.847238
Н	3.327918	-2.522545	-2.342827
Н	4.413474	-3.773739	-0.498284
Н	3.795341	-3.332875	1.861355
Н	2.078478	-1.624991	2.396557
Н	-2.443179	0.634247	1.092502
Н	-2.341995	1.561468	-0.461036
Н	-0.973170	-2.836072	-0.199606
Н	-1.608051	-1.964026	1.251260
С	-3.113728	-2.309478	-0.283059
С	-3.829459	-0.070361	-0.426677
Н	-3.847805	-0.196642	-1.524383
Н	-3.425920	-3.263789	0.157963
Н	-3.182620	-2.403828	-1.379560
0	-3.959448	-1.317430	0.207933
С	-4.965913	0.817654	0.025321
Н	-4.912664	1.804539	-0.446702
Н	-5.915191	0.350935	-0.256792
Н	-4.953747	0.934025	1.115392

 $\begin{array}{c} Ph \\ S \\ H \\ S \\ S^{+} \\ O \\ Me \end{array}$

CYC	LICS_SPh2_AX		
B3L\	P/6-31G*Geom	netry	
С	1.762821	-2.224886	-0.984889
С	2.841159	-3.090938	-0.865706
С	3.942752	-2.729236	-0.078130
С	3.977305	-1.492055	0.586920
С	2.910594	-0.610033	0.488361
С	1.801786	-0.981806	-0.301886
S	0.406150	0.030012	-0.619434
С	0.718993	1.730328	-0.251445
С	1.149173	2.213683	0.999621

С	1.377044	3.578382	1.135447	С	-1.884
С	1.183651	4.442614	0.045696	Н	-2.043
С	0.739609	3.952433	-1.185297	Н	-1.38
С	0.482668	2.591873	-1.343643	Н	-2.59
S	-1.067981	-0.454058	1.240620	0	-3.13
С	-1.533404	-2.214272	0.968223	С	-4.58
С	-2.629272	0.409895	0.756332	Н	-5.049
Н	0.922320	-2.484035	-1.622976	Н	-5.14
Н	2.834274	-4.037745	-1.395979	Н	-4.65
н	4,786892	-3,406932	0.008078		
Н	4 846919	-1 216482	1 174901		
H	2 957006	0.353840	0.978694		
н	1 281277	1 552988	1 850177		
н	1 701315	3 974479	2 092603		
н	1 360162	5 505577	0 166449		
н	0.58/88/	1 626301	-2 021760	CYC	LICS O
и Ц	0.304004	2 207044	2.021700	B3L	(P/6-310
	0.133473	2.207044	-2.297400	C	-1.96
	-0.090000	-2.770009	1 200727	Š	-1 01
	-2.045937	-2.400909	1.099727	C C	-1.85
	-2.351394	1.454517	0.585110	õ	0.40
	-3.233135	0.358866	1.672067	ŝ	1 86
C	-3.380434	-0.233027	-0.425824	0	2 47
C	-2.451092	-2.421631	-0.244449	0	2.173
н	-2.790489	-3.461698	-0.231082	0	2.06
Н	-1.901748	-2.253679	-1.184169		2.96
Н	-2.781537	-0.116677	-1.343933		2.902
0	-3.601086	-1.614115	-0.177513		4.18
С	-4.739399	0.434096	-0.601179	F	2.520
Н	-5.255167	-0.026806	-1.447673	Н	-1.60
Н	-5.355386	0.296587	0.292512	Н	-1.72
Н	-4.631969	1.504764	-0.800754	Н	-1.44
MOG	6/6-31G*Geometr	ry		Н	-1.60
С	2.260297	-1.815226	-0.937579	0	-3.87
С	3.524962	-2.361000	-0.801068	С	-3.478
С	4.488107	-1.696258	-0.039735	Н	-3.684
С	4.199826	-0.477597	0.584621	С	-3.372
С	2.940937	0.085062	0.472456	Н	-3.862
С	1.977437	-0.594608	-0.289252	Н	-3.612
S	0.363092	0.003745	-0.601481	С	-4.282
Ċ	0.234526	1.729841	-0.263732	Н	-4.029
Č	0.507742	2.307802	0.984969	Н	-5.34
č	0.374739	3.681651	1.109089	Н	-4.09
Č	-0.015172	4 454961	0.010659	M06/	/6-31G*(
Č	-0 299787	3 863255	-1 216707	С	-2.00
Č	-0 195671	2 485213	-1 364461	S	-0.810
Š	-0.806115	-0 753904	1 235303	С	-1.63
C	-1 001014	-2 520700	0.826333	Ō	0.37
Č	-2 /07120	-2.323730	0.020333	ŝ	1.86
С Ц	-2.437120	2 202061	1 564270	Õ	2.37
	2 760744	2.302901	1 202002	Õ	1.58
	5.709744	-3.293001	-1.302993	Č	2 77
	3.403017	-2.124209	0.007377	F	2 90
	4.970019	0.037720	1.102100	F	3 92
	2.728015	1.04/550	0.929911	F	2 0/1
H	0.800093	1.704880	1.044404	Ч	-1 660
н	0.572402	4.156625	2.06/141		-1.00
H	-0.1089/4	5.532/98	0.122463		1 05
H	-0.610450	4.4/1875	-2.062248		1 60
H	-0.421917	2.010879	-2.318/64		- 1.0U
Н	0.012876	-2.940697	0.737508	0	-3.790
Н	-1.455933	-2.948515	1.737024		-3.412
Н	-2.412700	0.956500	0.814553	Н	-3.404
Н	-3.061128	-0.395106	1.778894	C	-3.07
С	-3.147045	-0.769950	-0.362222	Н	-3.56

С	-1.884571	-2.766874	-0.391909
H	-2.043308	-3.848017	-0.484650
H	-1.381548	-2.426371	-1.315802
H	-2.591319	-0.465772	-1.271973
C	-3.138767	-2.173443	-0.250807
С	-4.585492	-0.316808	-0.456344
H	-5.049853	-0.768371	-1.338699
H	-5.147732	-0.642078	0.426943
H	-4.658543	0.772946	-0.544517

CYC	LICS_OTf_EQ	me	
B3L\	YP/6-31G*Geom	netry	
С	-1.961389	1.012328	-0.169907
S	-1.015564	-0.517740	-0.475694
С	-1.852688	-1.621252	0.708894
0	0.408100	-0.222470	0.311471
S	1.865602	-0.318487	-0.712849
0	2.179856	-1.722462	-0.860210
0	1.634192	0.588236	-1.819758
С	2.969991	0.490958	0.619906
F	2.902468	-0.245792	1.710239
F	4.187614	0.504545	0.117572
F	2.520605	1.712096	0.833225
Н	-1.609568	1.739018	-0.907190
Н	-1.720865	1.344661	0.844332
Н	-1.445956	-2.623189	0.546513
Н	-1.609179	-1.263566	1.713045
0	-3.873526	-0.247571	0.661570
C	-3.478627	0./11154	-0.309508
Н	-3.684587	0.323660	-1.319921
C	-3.3/2/32	-1.545475	0.439574
н	-3.862754	-2.208396	1.15/5/8
Н	-3.612999	-1.903884	-0.572619
C	-4.282476	1.983778	-0.072114
н	-4.029784	2.749553	-0.811415
н	-5.347060	1.752385	-0.160308
H	-4.095499	2.376942	0.931693
IVI06/	6-31G*Geomet	ry 4 ocooo	0.055475
C	-2.006377	1.059038	0.355175
5	-0.816241	-0.055385	-0.436473
	-1.636399	-1.620367	-0.035251
0	0.370276	0.051083	0.712835
3	1.802742	-0.723480	0.300478
0	2.3/188/	-1.091598	1.650695
0	1.582523	-1.019933	-0.728230
С Г	2.775034	0.773251	-0.283405
	2.900000	1.030039	0.091000
г г	3.928030	0.355379	-0.726147
	2.040411	1.277700	-1.239031
	-1.009043	2.060930	0.147199
	-1.900442	0.000292	1.433032
п	-1.055905	-2.410380	-0.515600
	-1.009070	-1.723300	1.03/4/2
ĉ	-3.190339 _3.412012	-0.042923	-0.2050/2
	-3.412012 2 404204	0.112229	1 205264
	-3.404204 2.075126	1 522205	-1.303304
	-3.0/3120	-1.002000	-0.000711
п	-3.300061	-2.493/00	-0.333043

Н	-3.093213	-1.375101	-1.646949
С	-4.405086	1.720570	0.423677
Н	-4.163987	2.763211	0.189997
Н	-5.406317	1.500053	0.040855
Н	-4.417844	1.589938	1.512217

CYC	LICS_OIT_AX		
B3LY	′P/6-31G*Geom	netry	
С	1.370646	-0.216155	1.827909
S	0.991434	-1.322235	0.417631
Ĉ	2 453583	-1 013949	-0 648471
õ	0.1001/2	0.420011	0.0455600
0	-0.109142	-0.429911	-0.455609
S	-1.811779	-0.811423	-0.170227
0	-2.303223	-1.474407	-1.352808
0	-1.861355	-1.357436	1.174876
С	-2.346712	1.016018	-0.161181
F	-2 061143	1 538925	-1 335621
F	-3 640550	1 028786	0.077691
F	-1 675813	1 625710	0.808385
L L	0 444147	0.450460	2.406466
	0.444147	-0.150409	2.400400
н	2.195992	-1.453128	-1.616755
Н	3.245043	-1.612496	-0.180084
Н	2.114795	-0.775391	2.408484
0	3.080064	0.988523	0.579368
С	1.916399	1.139209	1.364553
Ĥ	2 203234	1 707981	2 253624
н	1 138326	1 702316	0.831600
$\hat{\mathbf{C}}$	2 950250	0.472007	0.031009
C .	2.850259	0.473097	-0.727444
н	2.039438	1.034863	-1.212415
С	4.140250	0.621968	-1.523935
Н	4.411236	1.680045	-1.568318
Н	4.958636	0.076371	-1.043947
н	4 014900	0 252359	-2 546412
M06/	6-31G*Geomet	rv	
C	1 263236	0.045628	1 803328
C C	1.203230	4.005000	0.505420
5	0.954001	-1.205205	0.585132
C	2.433140	-1.089326	-0.458857
0	-0.108452	-0.521688	-0.439526
S	-1.780010	-0.822076	-0.143760
0	-2.292714	-1.515165	-1.285465
0	-1.845556	-1.283914	1.220790
Ċ	-2 260335	0 984015	-0 226649
F	-1 885365	1 /58126	-1 385/86
5	2 55 4 7 2 4	1.430120	0.076001
	-3.0047.04	1.034990	-0.070001
F	-1.642333	1.605833	0.756643
Н	0.317161	0.170424	2.345334
Н	2.223024	-1.682242	-1.357948
Н	3.223803	-1.590228	0.121210
Н	2.001909	-0.393994	2.489605
0	2,980757	1.072334	0.455318
č	1 701334	1 314762	1 151513
Ц	2 01 4000	2 026004	1.101010
	2.014999	2.030994	0.407440
	1.024888	1.700701	0.49/116
C	2.808654	0.363705	-0.753216
Н	2.007435	0.831160	-1.352109
С	4.117692	0.399136	-1.505827
L	4 385810	1.439126	-1.716792

Н	4.919103	-0.044920	-0.903227
Н	4.045285	-0.140177	-2.457053

CYC	LICS_O_EQ		
B3L1	/P/6-31G*Geom	netry	
С	-0.990371	1.313361	0.324241
S	-1.395032	-0.329163	-0.415380
С	0.178918	-1.107518	0.161353
Н	-1.793637	1.994857	0.025495
Н	0.176091	-2.125380	-0.242041
Н	0.129201	-1.160091	1.254911
Н	-1.013156	1.191391	1.412560
0	1.440696	0.982971	0.265524
С	0.372923	1.812001	-0.159244
Н	0.571848	2.802304	0.261939
Н	0.375530	1.908202	-1.258116
С	1.415887	-0.325134	-0.302303
Н	1.390276	-0.235498	-1.402632
С	2.710002	-1.014110	0.115111
Н	3.570052	-0.425124	-0.217698
Н	2.757352	-1.108036	1.205044
Н	2.776875	-2.013812	-0.326342
0	-2.533705	-0.937197	0.371728
M06/	6-31G*Geomet	ry	
С	-0.977651	1.294853	0.330726
S	-1.384257	-0.325941	-0.421038
С	0.174991	-1.090523	0.164660
Н	-1.789004	1.980784	0.058810
Н	0.176752	-2.119889	-0.215814
Н	0.119351	-1.120913	1.262986
Н	-0.987666	1.147482	1.419469
0	1.433131	0.978930	0.261375
С	0.369584	1.795189	-0.157937
Н	0.565720	2.795238	0.246896
Н	0.364016	1.880133	-1.261929
С	1.402056	-0.318409	-0.301528
Н	1.367820	-0.226521	-1.407029
С	2.679326	-1.012459	0.112667
Н	3.549276	-0.428381	-0.207226
Н	2.714425	-1.110575	1.205043
Н	2.743393	-2.013234	-0.330352
0	-2.503857	-0.926554	0.372904

CYC	LICS_O_AX		
B3L`	YP/6-31G*Geom	netry	
С	1.197008	1.183118	-0.560646
S	1.424454	-0.640879	-0.321313
С	-0.359232	-1.038754	-0.641711
0	1.660843	-0.857925	1.161545
Н	2.162747	1.634465	-0.311800
Н	-0.451037	-2.114219	-0.459559
Н	-0.562307	-0.833917	-1.699590

Н	0.977435	1.356921	-1.619975	н	2.156233	1.619164	-0.348927
0	-1.181217	1.162586	0.008052	н	-0.464659	-2.106547	-0.459183
С	0.085952	1.710552	0.341979	н	-0.567527	-0.812871	-1.692295
Н	-0.010536	2.794565	0.223295	н	0.944393	1.323818	-1.633032
Н	0.339819	1.494985	1.390151	0	-1.165828	1.157879	0.014866
С	-1.291063	-0.237990	0.272180	С	0.096614	1.691964	0.335761
Н	-0.992641	-0.435075	1.313130	н	0.010608	2.780317	0.229747
С	-2.753729	-0.612736	0.069531	н	0.362005	1.468342	1.383563
Н	-3.386168	-0.015701	0.733856	С	-1.277191	-0.230418	0.276942
Н	-3.061964	-0.417540	-0.963530	н	-0.978130	-0.432345	1.322135
Н	-2.917233	-1.672833	0.290257	С	-2.726205	-0.600994	0.062918
M06	/6-31G*Geometr	ry		н	-3.369113	-0.003663	0.719106
С	1.184943	1.162294	-0.573586	н	-3.018367	-0.399580	-0.976149
S	1.413566	-0.645781	-0.314917	н	-2.895892	-1.663319	0.275212
С	-0.358852	-1.028441	-0.634005				
0	1.626770	-0.833785	1.161423				

References

- [1] W. L. F. Armarego and D. D. Perrin, *Purification of Laboratory Chemicals*, Butterworth-Heinemann, **1996**, p. 529 pages.
- [2] J. Drabowicz, A. Kotynski and Z. H. Kudzin, J. Chromatogr. 1988, 447, 225-229.
- [3] M. A. Fascione, S. J. Adshead, S. A. Stalford, C. A. Kilner, A. G. Leach and W. B. Turnbull, *Chem. Commun.* **2009**, 5841-5843.
- [4] M. A. Fascione, C. A. Kilner, A. G. Leach and W. B. Turnbull, Chem. Eur. J. 2011, 17, accepted.
- [5] N. Fukuda and T. Ikemoto, J. Org. Chem. 2010, 75, 4629-4631.
- [6] W. T. Murray, J. W. Kelly and S. A. Evans, J. Org. Chem. 1987, 52, 525-529.
- [7] in *Macromodel*, Vol. Schrödinger, LLC, New York, NY, 2007.
- a) W. L. Jorgensen and J. Tirado-Rives, *Journal of the American Chemical Society* 1988, *110*, 1657-1666; b) W. L. Jorgensen and J. Tirado-Rives, *Proc. Natl. Acad. Sci. U S A* 2005, *102*, 6665-6670.
- [9] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox in *Gaussian 09, Revision A.1, Vol.* Gaussian, Inc., Wallingford CT, **2009**.
- [10] a) A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377; b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter 1988, 37, 785-789; c) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 1973, 28, 213-222.
- [11] Y. Zhao and D. Truhlar, *Theor. Chem. Account.* **2008**, *120*, 215-241.
- [12] a) C. Adamo and V. Barone, J. Chem. Phys. 1998, 108, 664-675; b) A. D. Becke, J. Chem. Phys. 1996, 104, 1040-1046.
- [13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople in *Gaussian03: Revision D.02, Vol.* Gaussian, Inc., Wallingford CT, **2004**.
- [14] J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev. 2005, 105, 2999-3094.
- [15] a) W. K. Musker, Acc. Chem. Res. 1980, 13, 200-206; b) N. Furukawa, K. Kobayashi and S. Sato, J. Organomet. Chem. 2000, 611, 116-126; c) V. G. Nenajdenko, N. E. Shevchenko, E. S. Balenkova and I. V. Alabugin, Chem. Rev. 2003, 103, 229-282.
- [16] N. Furukawa and S. Sato, Top. Curr. Chem. 1999, 205, 89-129.
- [17] M. Jacobsson, J. Oxgaard, C. O. Abrahamsson, P. O. Norrby, W. Goddard and U. Ellervik, *Chem. Eur. J.* 2008, 14, 3954-3960.

