SUPPLEMENTAL FIGURE LEGENDS

FIGURE S1. Initial full models for MEK6 and p38 α phosphorylation. (A) ASK1 phosphorylation of MEK6 and (B) MEK6 phosphorylation of p38 α are depicted as detailed kinetic models. Each step of the cascade was represented by a series of reversible and irreversible steps. Initial reversible protein complexes leading to a catalytically competent interaction are followed by an irreversible phosphorylation step, then reversible dissociation and rebinding of the monophosphorylated substrate. The second phosphorylation step is similarly modeled leading to a final, doubly phosphorylated product.

FIGURE S2. LC-MS/MS identification of p38a/K53M phosphorylation intermediates. p38a/K53M was phosphorylated by MEK6/S*T*, proteolyzed with chymotrypsin and separated on a RP-C18 column (see Methods). Total ion trace shows separation of individual peptides (bottom). Extracted ion chromatographs of masses corresponding to doubly charged activation loop peptides (middle). MASCOT analysis of collision-induced dissociation generated peptide fragments for peptide identification (top).

FIGURE S3. Sequence Alignment of MAPKs with ERK3 Activation loops of p38a, ERK2 and JNK are aligned with phosphorylation sites shown in red. S189, the activating phosphorylation site of ERK3, aligns with T180 of p38a and T183 of ERK2.

SUPPLEMENTAL TABLES

Table S1	Proteolytically-derived phosphorylation site peptides observed by LC-MS for indicated
kinases	

Kinase	Protease	Peptide	Mass	Charge
MEK6	Chymotrypsin	LVDSVAKTIDAGCRPY	840.6	2
	5 51	LVDSVAKT*IDAGCRPY	880.6	2
		LVDS*VAKTIDAGCRP	880.6	2
		LVDS*VAKT*IDAGCRP	920.3	2
p38a	Trypsin	HTDDEMTGYVATR	748.6	2
		HTDDEMTGY*VATR	788.6	2
		HTDDEMT*GYVATR	788.6	2
		HTDDEMT*GY*VATR	828.6	2
ATF2	Trypsin	NDSVIVADQTPTPTR	807.6	2
		NDSVIVADQT*PTPTR	847.6	2
		NDSVIVADQTPT*PTR	847.6	2
		NDSVIVADQT*PT*PTR	887.6	2
		FGPAR NDSVIVADQTPTPTR	1072.8	2
		FGPAR NDSVIVADQT*PTPTR	1112.8	2
		FGPAR NDSVIVADQTPT*PTR	1112.8	2
		FGPAR NDSVIVADOT*PT*PTR	1152.8	2

Table S2 Equations used in final models.

(A) Differential equations used in modeling ASK1 phosphorylation of MEK6.

d[ASK1]/d <i>t</i>	=	- k_1 [ASK1][MEK6ST] - k_2 [ASK1][MEK6ST] + k_3 [ASK1_MEK6STbindT] + k_4 [ASK1_MEK6STbindS] - k_5 [ASK1][MEK6ST*] - k_6 [ASK1][MEK6S*T] + k_7 [ASK1_MEK6ST*] + k_8 [ASK1_MEK6STbindT]
d[MEK6ST]/dt	=	- <i>k</i> ₁ [ASK1][MEK6ST] - <i>k</i> ₂ [ASK1][MEK6ST]
d[ASK1_MEK6STbindT]/dt	=	<i>k</i> ₁[ASK1][MEK6ST] - <i>k</i> ₃[ASK1_MEK6STbindT] - <i>k</i> ₃[ASK1_MEK6STbindT]
d[ASK1_MEK6STbindS]/dt	=	k_2 [ASK1][MEK6ST] - k_4 [ASK1_MEK6STbindS]
d[MEK6ST*]/d <i>t</i>	=	<i>k</i> ₃[ASK1_MEK6STbindT] - <i>k</i> ₅[ASK1][MEK6ST*]
d[MEK6S*T]/d <i>t</i>	=	<i>k</i> ₄[ASK1_MEK6STbindS] - <i>k</i> ₆ [ASK1][MEK6S*T]
d[ASK1_MEK6ST*]/d <i>t</i>	=	<i>k</i> ₅[ASK1][MEK6ST*] - <i>k</i> 7[ASK1_MEK6ST*]
d[ASK1_MEK6S*T]/d <i>t</i>	=	<i>k</i> ₆ [ASK1][MEK6S*T] - <i>k</i> ₈ [ASK1_MEK6S*T]
d[MEK6S*T*]/d <i>t</i>	=	<i>k</i> ₇ [ASK1_MEK6ST*] + <i>k</i> ₈ [ASK1_MEK6S*T] + <i>k</i> ₉ [ASK1_MEK6STbindT]

(B) Differential equations used in modeling MEK6 phosphorylation of $p38\alpha$. k_7 was introduced to account for a small fraction of each unphosphorylated or partially phosphorylated $p38\alpha$ species becoming inactive to account for the persistence of these species through the time course.

d[ASK1]/d <i>t</i>	= $-k_1$ [ASK1][MEK6ST] - k_2 [ASK1][MEK6ST] + k_3 [ASK1_MEK6STbindT] + k_4 [ASK1_MEK6STbindS] - k_6 [ASK1][MEK6ST*] - k_6 [ASK1][MEK6S*T] + k_7 [ASK1_MEK6ST*] + k_8 [ASK1_MEK6STbindT]
d[MEK6ST]/dt	= - k ₁ [ASK1][MEK6ST] - k ₂ [ASK1][MEK6ST]
d[ASK1_MEK6STbindT]/dt	= k₁[ASK1][MEK6ST] - k₃[ASK1_MEK6STbindT] - k₀[ASK1_MEK6STbindT]
d[ASK1_MEK6STbindS]/dt	= k ₂ [ASK1][MEK6ST] - k ₄ [ASK1_MEK6STbindS]
d[MEK6ST*]/dt	= <i>k</i> ₃[ASK1_MEK6STbindT] - <i>k</i> ₅[ASK1][MEK6ST*]
d[MEK6S*T]/d <i>t</i>	= <i>k</i> ₄[ASK1_MEK6STbindS] - <i>k</i> ₆ [ASK1][MEK6S*T]
d[ASK1_MEK6ST*]/d <i>t</i>	= <i>k</i> ₅ [ASK1][MEK6ST*] - <i>k</i> ₇ [ASK1_MEK6ST*]
d[ASK1_MEK6S*T]/d <i>t</i>	= <i>k</i> ₆ [ASK1][MEK6S*T] - <i>k</i> ₈ [ASK1_MEK6S*T]
d[MEK6S*T*]/d <i>t</i>	= <i>k</i> ₇ [ASK1_MEK6ST*] + <i>k</i> ₈ [ASK1_MEK6S*T] + <i>k</i> ₈ [ASK1_MEK6STbindT]

Table S3 Derived kinetic constants based on experimentally observed progress curves of ASK1 phosphorylation of MEK6/K82M

Parameter	Value	Std. Error	90% confidence interval
$\mathbf{k_1}^\ddagger$	$2.0 \ \mu M^{-1} \ min^{-1}$	NA	NA
\mathbf{k}_2	$0.044 \ \mu M^{-1} \ min^{-1}$	0.0092	0.003 - 0.057
\mathbf{k}_3	11 min ⁻¹	0.75	10 - 12
\mathbf{k}_4	0.72 min ⁻¹	0.24	0.47 - 1.7
\mathbf{k}_5	$2.5 \ \mu M^{-1} \ min^{-1}$	0.11	2.3 - 2.7
\mathbf{k}_{6}	$4.7 \mu M^{-1} min^{-1}$	1.3	3.5 - 6.6
\mathbf{k}_7	5.3 min^{-1}	1.2	3.7 - 8.5
k_8	0.011 min ⁻¹	0.0086	0.00002 - 0.024
k 9	4.6 min^{-1}	0.35	4.1 - 5.2

 k_1 was determined by trial and error, and is similar to the approximate turnover for loss of MEK6/ST.

Table S4 Derived kinetic constants based on experimentally observed progress curves of MEK6 phosphorylation of p38a/K53M

Parameter	Value	Std. Error	90% confidence interval
$\mathbf{k}_1^{\$}$	154 μM ⁻¹ min ⁻¹	NA	NA
\mathbf{k}_2	$31 \mu M^{-1} min^{-1}$	1.7	28 - 34
\mathbf{k}_3	$101 \ \mu M^{-1} \ min^{-1}$	8.9	87 - 116
\mathbf{k}_4	15 min ⁻¹	4.1	9.8 - 23
\mathbf{k}_5	6.6 min ⁻¹	0.43	6.0 - 7.3
\mathbf{k}_{6}	44 μM ⁻¹ min ⁻¹	5.6	36 - 54
\mathbf{k}_7 [‡]	$0.03 \ \mu M^{-1} \ min^{-1}$	NA	NA

[§] A range of values for k_1 fit the model; we picked the lowest, which put k_1 midrange of values reported in the literature (1). [‡]Rate of p38 α species inactivation.

SUPPLEMENTAL REFERENCES

 Fujioka, A., Terai, K., Itoh, R. E., Aoki, K., Nakamura, T., Kuroda, S., Nishida, E., and Matsuda, M. (2006) Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. *J Biol Chem* 281, 8917-8926

Figure S1

p38α	¹⁶⁸ DFGLARHTDDEMTGYVATRWYRAPE ¹⁹²
ERK2	¹⁶⁵ DFGLARVADPDHDHTGFL T E Y VATRWYRAPE ¹⁹⁵
JNK2	¹⁶⁸ DFGLARTACTNF MMTPYVVTRYYRAPE ¹⁹⁵
ERK3	¹⁷¹ DFGLARIMDPHYSHKGHLSEGLVTKWYRSPR ²⁰¹

Figure S3