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Modeling probe dynamics and noise process

The objective of any measurement system is to sense physical quantities (input signal) of interest

and give a corresponding output signal. Often, output signal is assumed to be a direct representation

of the input, that is, input signal is estimated by linear scaling of the output signal. However, this

is not true in general and therefore the transformation from physical units to measurement units

is described by a dynamical model. A generic discrete time dynamical model, relating input and

output is described by the following

pk + a1pk−1 + · · ·+ alpk−1 = b0qk + b1qk−1 + · · ·+ bmqk−m (1)

where p = (p0, p1, . . .) represents the output signal of the measurement system due to an input

signal q = (q0, q1, · · · ). k is the time/sample index. Thus, the measurement system processes

or “filters” the input signal q and provides the output signal p. Supplementary Fig. 1 shows a

block diagram depicting various input sources and their filtering by the system dynamics. Repre-

sent the time shift operator by D, with (Drx)k = xk−r, then the above dynamical model can be
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symbolically represented as

p = H(D)q, where H(D) =
b0 + b1D + · · ·+ bmDm

1 + a1D + · · ·+ alDl
, (2)

which is a representation analogous to theZ-transform. The above description includes all systems

that are linear, time invariant, causal and finite dimensional which is a large class of systems that

include, for example, optical tweezers and AFMs. As an example, a model for optical tweezers in

the above form is developed here, where, the measurement system dynamics in continuous-time is

described by

γẋb + k (xT − xb) = f

where γ is the drag coefficient of the trapped bead, k is the trap stiffness, xb is the bead position,

xT is the trap position and f is the external force on the bead. In studies of motor proteins using

optical tweezers, external force, f has two components. One is the force applied by the motor,

fm and the other is random force, n′ due to the thermal bath. fm is generated when the motor is

stretched and is assumed to admit the following description:

fm = km(xm − xb)

where km is the motor stiffness and xm is the position of the motor beyond its rest length. In

controlled force studies, fm is regulated at a constant value, f0, by modulating xT . The popular

choice of control is to have xT = xb − f0

k
. This leads to the continuous-time dynamics

γẋb + kmxb = kmxm + f0 + n′.
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As f0 is a constant, it only affects the steady state solution of xb. Therefore, without loss of

generality, the dynamics, once discretized in time, leads to the difference equation

xb,k︸︷︷︸
pk

=
kmTs

(γ + kmTs)− γD︸ ︷︷ ︸
H(D)

(
xm,k +

n′

km

)
︸ ︷︷ ︸

qk

(3)

where Ts is the sampling time of the measurement system and discretization method used is de-

scribed by the transformation ẋ → xk−xk−1

Ts
= 1−D

Ts
xk. Thermal noise n′ is a white process with

a power spectral density 4KBTγ where KB is the Boltzmann’s constant, and T is the absolute

temperature. Note that Eq. 3 has the same form as Eq. 2. Note that q in Eq. 3 is the sum of two

signals: signal of interest, x := xm,k and noise, n := n′
km

. Using the linear dynamics of the system,

p can be decomposed into two signals as

pk = zk + wk where, z = Hx and w = Hn, (4)

where z is the output of the measurement system when input is only the signal x, whereas w is the

output of the measurement system when input is the noise, n. In addition, typically p is corrupted

during measurements and thus the measured data is given by

yk = pk + νk (5)

where νk is also often modeled as a white noise process with known power that can be experimen-

tally determined. As an application to step detection, additional modeling assumptions are made

about the input signal, x, that it is a staircase function generated by a sequence of steps. Thus

xk+1 = xk + uk. (6)

Note that without any further assumptions on uk, Eq. 6 is merely stating that xk+1 − xk := uk

and thus poses no further constraints on the applicability of the model. The complete model of
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the measurement system is then described by Eq. 2, 4, 5 and 6 that is depicted in Supplementary

Fig. 1.

Cost function derivation for a general dynamical model

Step detection methodology, as outlined int the main article, needs a cost function formulation for

a candidate step function. The step function that minimizes the chosen cost function is the optimal

estimate for a particle iteration of the algorithm. The formulation of cost function here is for a

more general setting than what is presented in the main article. For the remainder of the article,

stochastic variables will be represented by bold characters and the normal character will represent a

particular realization of the corresponding stochastic variable. Summarizing the model description

(Eq. 4-6), it follows that

xk+1 = xk + uk

zk =
m∑

i=0

bixk−i −
l∑

j=1

ajzk−j , wk =
m∑

i=0

bink−i −
l∑

j=1

ajwk−j (7)

yk = zk + wk + νk.

with the assumption that the noise process, n and ν are zero mean Gaussian white noise with

variance σ2
n and σ2

ν respectively. An intuitive strategy to identify the location and size of steps that
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occur in x, by analyzing measured data y, involves solving the following optimization problem

min
(u0,u1,...,uN−1)

N−1∑
k=0

(yk+1 − zk+1)
2︸ ︷︷ ︸

Quadratic Error

+ W (uk)︸ ︷︷ ︸
Penalty

subject to :

xk+1 = xk + uk ; x0 = 0

zk =
m∑

i=0

bixk−i −
l∑

j=1

ajzk−j ; z0 = 0

(8)

where the data record (y1, . . . , yN) is available and W (uk) is a penalty term, that penalizes every

nonzero choice of uk. Evidently, the quadratic term strives to choose u such that the data y is

interpolated well while the penalty term provides a means to isolate the effect of noise terms

w and ν from the eventual fit, (u0, · · · , uN−1) that also determines (x1, . . . , xN). W (uk) also

provides a means to incorporate a relative preference of one size of the step over another. Taking

as an example, the detection of steps in kinesin motor data, W (uk) can be shaped such that it is

small when uk is close to 8 nm and thus, these steps will be favored over other step sizes. In the

algorithm developed here, such shaping is tuned automatically as an integral part of the detection

methodology.

It is shown in this article that the heuristic approach above is similar to maximum likelihood

sequence estimation, x̂N
1 of sequence xN

1 from given measurement sequence yN
1 , that is obtained

by determining

x̂N
1 = arg max

xN
1

pxN
1 |yN

1
(xN

1 |yN
1 ) (9)

where, xN
1 := {x1, x2, ..., xN}, px(x) denotes the probability density function (p.d.f.) of random

variable x, px|y(x|y) denotes the p.d.f. of x given y = y. Thus in Eq. 9, the optimal choice
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x̂N
1 is sought that is the most probable input sequence given that the measured sequence is yN

1 =

(y1, . . . , yN). Note that by applying Bayes’ rule 1 it follows that

x̂N
1 = arg max

xN
1

pxN
1 ,yN

1
(xN

1 , yN
1 )

pyN
1
(yN

1 )
= arg max

xN
1

pyN
1 |xN

1
(yN

1 |xN
1 )pxN

1
(xN

1 ). (10)

By further application of Bayes’ rule, it can be shown that

x̂N
1 = arg max

xN
1

{
N∏

k=1

pyk|yk−1
1 ,xN

1
(yk|yk−1

1 , xN
1 )pxk|xk−1

1
(xk|xk−1

1 )

}
(11)

where

py1|y0
1,xN

1
(y1|y0

1, x
N
1 ) := py1|xN

1
(y1|xN

1 )

px1|x0
1
(x1|x0

1) := px1(x1).

From the input-output model in Eq. 7 it follows that,

yk = zk + wk + νk

=
m∑

i=0

bixk−i︸ ︷︷ ︸
x̄k

+
m∑

i=0

bink−i︸ ︷︷ ︸
n̄k

−
l∑

j=1

ajyk−j︸ ︷︷ ︸
ȳk

+
l∑

j=1

ajνk−j︸ ︷︷ ︸
ν̄k

+νk.

From the last equation, it can be seen that if yk−1
1 = yk−1

1 and xk−1
1 = xk−1

1 then yk = x̄k + n̄k −

ȳk + ν̄k + νk. Therefore, the distribution of yk is dictated by the random variable, n̄k + ν̄k + νk.

When yk = yk, then n̄k + ν̄k + νk = yk − x̄k + ȳk. It follows that,

pyk|yk−1
1 ,xN

1
(yk|yk−1

1 , xN
1 ) = pn̄k+ν̄k+νk

(yk − x̄k + ȳk) =
1√
2πσ̄2

n

exp

(
−(yk − x̄k + ȳk)

2

2σ̄2
n

)
, where

σ̄2
n :=

m∑
i=0

b2
i σ

2
n +

l∑
j=1

a2
jσ

2
ν
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which follows from the fact that ni, νj are Gaussian, i.i.d. (independent and identically dis-

tributed) noise sources. Note that in Eq. 11, pxk|xk−1
1

(xk|xk−1
1 ) = pxk|xk−1

(xk|xk−1) and as

uk−1 = xk − xk−1, it follows that pxk|xk−1
(xk|xk−1) = puk−1

(xk − xk−1). In absence of a-priori

knowledge and for the purpose of initializing the algorithm, a uniform distribution for px1(x1) is

assumed. Likewise, it is assumed that x0 := x1 and pu0(x1 − x0) := 1, from which it follows that,

x̂N
1 = arg max

xN
1

{
N∏

k=1

pyk|yk−1
1 ,xN

1
(yk|yk−1

1 , xN
1 )pxk|xk−1

1
(xk|xk−1

1 )

}

= arg max
xN
1

uk=xk+1−xk

N∏
k=1

exp
(−(yk−x̄k+ȳk)2/2σ̄2

n

)√
2πσ̄2

n

puk−1
(uk−1) (12)

= arg min
xN
1

uk=xk+1−xk

N∑
k=1

(yk − x̄k + ȳk)
2

2σ̄2
n

− log puk−1
(uk−1) (13)

= arg min
xN
1

uk=xk+1−xk

N∑
k=1

(yk − x̄k + ȳk)
2 − 2σ̄2

n log puk−1
(uk−1)V iterbialgorithm

= arg min
xN
1

uk=xk+1−xk

N−1∑
k=0

(yk+1 − x̄k+1 + ȳk+1)
2 + W (uk)

= arg min
xN
1

uk=xk+1−xk

N∑
k=0

hk(x
k
k−m+1, uk) + W (uk) (14)

where

W (uk) := −2σ̄2
n log p(uk), hk := (yk+1 − x̄k+1 + ȳk+1)

2 .

hk does not have explicit dependence on xk+1 because xk+1 is expressed in terms of xk and uk. The

structure of cost function in Eq. 14 is similar to one in Eq. 8 for appropriate choice of weighting

function W . Thus, the intuition driven optimization problem where the compromise between the
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accuracy of fitting data and fitting noise as posed in Eq. 8 is the same as the probabilistic setup of

problem in Eq. 14.

The objective now is to find a staircase function that minimizes the cost function in Eq. 14.

A straightforward approach is to compare the cost of all possible staircase functions. Computa-

tionally this is not feasible. Consider a measured signal that has N samples with each sample

allowed to take any of the possible M values. Evidently, the total number of candidate sequences

is MN . As N can be a large number (for example ∼ 104 in this article), even if M = 2, the total

number of possible comparisons is intractably large (103010). Fortunately, the structure of the cost

function lends itself to a form where a solution approach, based on the dynamic programming,

can be applied which greatly reduces the number of computations (less than 108). As shown later,

computational complexity of this approach is NMm+1, where m is the same as in Eq. 7. This is a

significant reduction in the number of computations. Subsequently, other techniques are developed

to further reduce the computational complexity that render the step detection method applicable to

single molecule studies based on optical tweezers or AFM.

Dynamic programming approach to minimization

The minimization problem is made feasible by discretizing the space of step functions. That is,

a step function is allowed to takes values from a finite but large set of numbers. The difference

between two successive values is kept small and is referred to as the resolution parameter of the

algorithm. Define, sk := [xk, xk−1, ..., xk−m+1]
′

that will be referred to as a state which keeps
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track of the last m values of xk. Assuming that xk can have M possible values, then sk can have

Ms := Mm possible values, {α1, ..., αMs}. A staircase function, {x1, x2, · · · , xN} can be uniquely

represented by the corresponding sequence {s1, s2, · · · , sN} such that sk+1 depends on sk and

another independent variable, uk := xk+1 − xk through a function f , i.e., sk+1 = f(sk, uk). uk is

a step that is said to transit sk to sk+1 through a function f . Now define, gk := hk(x
k
k−m+1, uk) +

W (uk). Clearly, gk is a function of (sk, uk) and represents the cost associated with the transition

sk → sk+1. Thus, the problem to be solved takes the form,

ŝN
1 = arg min

sk

N−1∑
k=0

gk(sk, uk) (15)

such that

sk+1 = f(sk, uk).

In other words, the problem in Eq. 14 has been converted into the problem in Eq. 15 where the

optimal sequence {ŝ1, ŝ2, · · · , ŝN} is to be found. A strategy to obtain the optimal sequence sk

is provided by the dynamic programming algorithm. The key step of this algorithm is described

in Supplementary Fig 2. In the figure, horizontal axis represents the time/sample index k and

the vertical axis represents the various values that the state sk can take at any time index k. In the

figure, the state sk can take any of the values α1, . . . , α4 that is sk ∈ {α1, . . . , α4}. The links in the

graph of Supplementary Fig 2 represent the cost of transitioning; for example, a particular link

connection from an element of the column at time instant k to an element of the column at time

instant k + 1 represent the cost to transition from a particular value of the state at time k to a value

of the state at k + 1. For example, the cost to transition from a value αj at time instant k to αi at

time instant k+1 is given by the link with weight gk(αj, uk), where uk is such that f(αj, uk) = αi.

9



In the figure, the cost for transitioning from various values αj, j = 1, . . . , 4 at time instant k = 3

to α1 at time instant k = 4 is shown by the weights on the links. Also, at every instant k, for every

possible value of the state sk, the optimal cost to reach that state from the state at time zero is kept

track of in Jk(xj). Thus, for time step k = 3, the optimal cost to reach α2 is given by J3(α2).

This cost is denoted in the figure at the (3, 2) location of the graph. Also, the sequence of states

that lead to the state sj at time step k is determined, and is denoted by Sk
1 (αj). In the figure, for

example, the optimal sequence that leads to the optimal cost to reach α2 at time step 3, J3(α2)

is given by the sequence S3
1(α2) = {α1, α2, α2}. Furthermore J3(α2) = g1(α1, u1) + g2(α2, u2)

where α2 = f(α1, u1) and α2 = f(α2, u2).

The iterative procedure to obtain the optimal cost and the optimal sequence to reach a par-

ticular state αj at time instant k + 1 is obtained as follows. Assume that optimal cost Jk(αj) and

the optimal sequence Sk
1 (αj) to reach state αj at time instant k is known for all j = 1, . . . , 4. For

time instant k + 1, consider the task of finding the optimal cost to reach αi and the corresponding

optimal sequence. This is achieved by comparing the optimal cost of reaching αi at time instant

k+1 from every possible state αj at time instant k. This optimal cost of reaching αi at instant k+1

via αj at instant k is Jk(αj) + gk(αj, uk) where uk is such that f(αj, uk) = αi. The optimal cost

to reach αi at time instant k + 1 is determined by the index ĵ that minimizes Jk(αj) + gk(αj, uk).

The optimal cost Jk+1(αi) to reach αi at time instant k + 1 is then Jk(αĵ) + gk(αĵ, ûk) where

gk(αĵ, ûk) = αi. The optimal sequence to reach αi at instant k + 1 is Sk+1
1 (αi) = [Sk

1 (αĵ), αi].

This procedure can be carried to the last time instant and the state at the last time step with
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the smallest cost denotes the optimal global cost achievable and the corresponding sequence to

reach this state determines the optimal sequence for the problem. The proof of the last assertion is

standard in the dynamic programming literature and can be found in 2.

Note that at any time step, arbitrary state transitions are not allowed. Only those state

transitions that correspond to a valid staircase function are allowed. For example, if sk is fixed

to{α1, α2, α3} then next possible states sk+1 will be of the form {α2, α3, αj} ; j = 1, ...,M , as-

suming that xk can take M possible values. Therefore for a given state, sk, M transitions will

be compared. As there are Ms = Mm number of states sk, the number of comparisons made at

each time step is MMs = Mm+1. Therefore, the number of comparisons made for N time steps

is NMm+1 which is much less compared to the brute force method (MN ). However, if m > 1

then computational burden is still large especially if M is large. In order to limit computational

burden when m > 1, the system can be modeled in an alternative fashion so that the dynamics as

written in Eq. 1 includes terms due to past outputs and just the immediate past input. Therefore,

the numerator of Eq. 2 will be of the form b0 + b1D so that m = 1. This is possible is most cases.

In cases where this is not possible, an alternative formulation to cost function is suggested below

that does not include higher order (> 1) input delay terms. Note that in the formulation for first

order systems as in Eq. 3, which is the case for optical tweezers, no modification is required.

z̃(xk+1) � b0xk+1 +
m∑

i=1

biS
k
k+1−i(xk)−

l∑
j=1

aiyk+1−j

g(xk, uk) = {yk+1 − z̃(xk+1)}2 + W (uk)

ûk = arg min
uk

[g(xk, uk) + J(xk)]
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where z̃(xk+1) denotes a pseudo output of the filtering system when input is the candidate staircase

function. W (uk) takes the same expression as in Eq. (8). Although this method is only sub-

optimal, simulation results show good performance.

Optimizing the computation

Generally, dynamic programming algorithm requires large number of computations even if the

states do not have memory. Consider a stair-case like stepping signal that ranges from 0 to L

including noise. Then the possible staircase levels lie in the interval [0, L]. To apply dynamic pro-

gramming, the set is partitioned as {0, Δ, 2Δ, ...,MΔ} such that MΔ ≥ L. As mentioned earlier,

with M levels and N time points in the data, the total number of computations required scales as

NM2. Note that M ∝ L ∝ NΔ−1. Note that most of the computations are for transitions that are

unlikely. Step sizes that take the states beyond 3σ of the observations may not be expected, there-

fore such state transitions can be removed from the computation. This is done by finding upper and

lower bounds that envelope the observed data for each time point. Specifically, for any time index,

the maximum and minimum values of the observed data in a window around the sample is com-

puted and set as the bounds. Hence only the state transitions that involve states within the bounds

of current and next time points are computed. This results in significant reduction in computational

costs without affecting the quality of the results. In the implementation the window size is adapted

based on the system model. If the system bandwidth is low compared to the sampling frequency

then larger window size is required. Another technique to reduce the computation cost is to store

optimal state transitions rather than the survivor vector. Updating survivor vector at each time step
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leads to unnecessary read-write operations of large blocks of data that increases with time index.

Storing state transitions instead involves bounded read-write operations of the order of M and the

global survivor vector can be reconstructed at the end using stored optimal transitions.

Evidence for Single Molecule Force Experiments with Kinesin

Stall Force experiments were performed with the same kinesin sample, that data for which is

presented in the main article. Supplementary Fig. 3 shows representative traces for an optical

trapped bead being pulled by kinesin. Bead movement stops when displaced by about 140 nm from

the center of optical trap. Optical trap stiffness was set to about 0.035 pN/nm. Therefore, kinesin

stalled at a load of about 5 pN. Multiple motor based bead movement in similar setups are shown

to sustain forces in excess of 5 pN3. Another empirical indicator of single molecule experiment is

the percentage of beads that show motility when brought in the vicinity of the microtubule. With

a success rate of less than 30%, a negligible percentage of beads would have two or more motors

attached to the same bead.
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2. Sniedovich, M. Dynamic programming (CRC, 2009).

3. Vershinin, M., Carter, B., Razafsky, D., King, S. & Gross, S. Multiple-motor based transport

and its regulation by Tau. Proceedings of the National Academy of Sciences 104, 87 (2007).
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USER INPUT: y, σ2
n, σ

2
v , b, a, resolution

α =min(y):resolution:max(y)
S1

1(x1) = x1 ∀x1 ∈ α

z̃(x1) = x1

J1(x1) = {y1 − z̃(x1)}2,
σ̄ =

∑m
j=0 b2

jσ
2
n +

∑l
j=1 a2

jσ
2
ν

p0(u) = exp

(−4.5

σ̄
δ(uk �= 0)

)
ε = exp(−50)

DO
p(u) = p0(u)

FOR k = 1 : N − 1

FOR xk+1 in α

uk = xk+1 − α
W (uk) = −2σ̄ log p(uk)
z̃(xk+1) = b0xk+1 +

∑m
i=1 biS

k
k+1−i(α)

−∑l
j=1 aiyk+1−j

gx(α, uk) = {yk+1 − z̃(xk+1)}2 + W (uk)
ûk = arg minu [J(xk) + gk(α, uk)]
x̃k = xk+1 − ûk

Jk+1(xk+1) = Jk(x̃k) + gk(x̃k, ûk)
Sk+1

1 (xk+1) = [Sk
1 (x̃k) xk+1]

END FOR
END FOR

Ŝ = arg minxN
S(xN)

p0(u) = Normalized Histogram(Ŝ) + ε

WHILE (p(u) �= p0(u))

RETURN Ŝ = S(x̃)

Supplementary Table 1. Step detection Algorithm
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Supplementary Figure 1 Discrete time input output model.

Supplementary Figure 2 Forward dynamic programming algorithm

Supplementary Figure 3 Stall force experiment. A kinesin coated optically trapped
bead is pulled by the kinesin over a microtubule. The graph shows position of the bead
(green axes) and force (blue axes), obtained by multiplying position values by optical trap
stiffness constant (0.035 pN/nm). As kinesin pulls the bead away from the center of the
trap, kinesin experiences increasing amount of force. At about 5 pN restoring force, the
kinesin stalls, unable to pull the bead further away. Fast downward transitions are due
the kinesin molecule getting detached from the microtubule. When kinesin detaches, the
bead is pulled back to the center of the optical trap.

15


