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A brief literature survey

In this Section we present a quick overview of the literature and of the main computational methods
which investigate drug synergism (or synergism induced by similar network perturbations, like gene
knockout). We list them from the most similar to the most different with respect to our algorithm,
underlying the main discrepancies.

Optknock and OptOrf [1, 4]: the two works aim to find the best knockout (simple or multiple,
up to a limit in cardinality fixed by the user) that maximizes the biosynthesis of a given metabolite
while optimizing the biomass production. Both methods are based on FBA (OptOrf includes also
some transcriptional regulations). The bilevel optimization contained in both algorithms has been
reformulated through the duality theory, which assures the computational efficiency of the method.
Indeed, we have been inspired by these works in developing of our algorithm.

Essentiality and synthetic lethality [7]: Through an algorithm which is similar to Optknock,
this work identifies pairs, triple and some high-order gene deletions which are lethal in the Escherichia
coli metabolism. Also in this method, the optimization is based on the biomass and does not consider
any alternative objective reaction.

OPMET [6]: the aim is to search the gene knockout (of any cardinality) which stops a given ob-
jective reaction while inducing the minimum damage on the network (estimated as number of stopped
reactions and unavailable metabolites). The approach used to model the network is similar to FBA
but with a weaker assumption on the steady state: for instance, accumulation of metabolites is allowed.
The search on the space of the combinations is performed dynamically through a branch-and-bound
algorithm, refined with two filtering strategies. Properties of Linear Programming, like duality theory,
which are useful for the efficiency of the algorithm have not been exploited.

Epistasis in human metabolism [3]: the investigation of gene epistasis has been here inves-
tigated through FBA formalism; no limitation on the cardinality of the gene deletions is imposed.
However, since the search is based on an approximate determination of the elementary modes (called
“pathway fragment generation”), solutions are suboptimal. An exact calculation of the elementary
modes would have been computationally much more expensive and almost prohibitive for a large
network such as the human. Moreover, no information on the side effect on the whole network is
included.

Epistasis in yeast metabolism [5]: epistatic interactions are here studied performing an exhausti-
ve search of all pairs of gene knockouts on the S.cerevisiae network modeled according to FBA; the
effect is characterized through an epistasis indicator which quantifies the change of the biomass produc-
tion of the multiple perturbation with respect to the two single perturbations. No objective reaction
other than growth rate has been considered.
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Drug targets in cancer [2]: also in this case only an exhaustive evaluation of all pairs of knock-
outs has been carried out; moreover, the side effect of the potential antitumoral treatments on the
normal human cell is estimated in terms of ATP production, a central process in the metabolism.
However, according to this evaluation criterion, all the antitumoral solutions we have found show the
same impact on the human network, meaning that this definition of side effect is not able to discrim-
inate among these different drug treatments, while our definition does. Indeed, instead of considering
a single reaction, our approach estimates the impact as a global loss of the cellular functions, which in
our opinion is fairly reasonable since no tissue-specific network of the human metabolism is available
at the moment.

Algorithm for competitive organisms

The following version of the algorithm allows us to study the selectivity problem, in a multi-organism
context, in which we would like to stop an objective reaction belonging to a first organism while having
a minimal effect on a second metabolic network (whose fluxes are denoted here by w). We assume
that the two organisms live in the same environment and hence are subject to the same drugs.

Minimize
∑Ñr

i=1 αi(1− yi)− b
∑Nd

k=1 dk “outer problem”
such that 



Maximize vobj “inner problem”
such that ∑Nr

j=1 Si,jvj = 0;
vj ≤ Uj ;
vj ≤ Ujdk;




∑Ñr
h=1 S̃i,hwh = 0;

wh ≤ Ũh;
wh ≤ Ũhdk;
vobj = 0;
εyh ≤ wh;
Ũhyh ≥ wh.

As can be seen, flux constraints (S̃w = 0, thermodynamical bounds wh ≤ Ũh and common drugs
inequalities wh ≤ Ũhdk) and side effect on the second network (calculated as σ(D) = minw ‖w−w∗‖)
are located only in the outer problem; therefore the fact that the side effect is now evaluated on w
instead of on v does not interfer with the inner problem, i.e., with the application of the duality
theorem for the first network. This separation guarantees the constraint max(vobj) = 0 and the
optimality of the solution.
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Figures and Tables

# Drug M NM R S.E. cancer # Drug M NM R S.E. cancer

1 Vigabatrin 1 1 3 17.7 X 41 Pemetrexed 4 0 8 15.0 X
2 Chlormerodrin 1 1 1 10.7 X 42 Mycophenolic acid 2 0 1 4.0 X
3 Fenoprofen 2 0 2 10.0 43 Naftifine 1 0 1 34.0 X
4 Pravastatin(*) 1 1 1 34.0 X 44 Scopolamine 1 5 3 42.5
5 Masoprocol 1 0 2 13.0 45 Selegiline 2 0 5 23.0
6 Carbidopa 1 0 5 20.0 46 Hexachlorophene 1 1 4 9.7 X
7 Rosiglitazone 1 1 60 252.7 X 47 Phenelzine 6 1 9 22.7 X
8 Zanamivir 1 0 2 8.0 48 Sulfasalazine 4 3 10 55.1 X
9 Papaverine 4 0 2 2.0 49 Minaprine 2 7 6 77.9
10 Udenafil 1 0 3 5.0 50 Pentoxifylline 4 2 21 43.4 X
11 Methotrexate 1 0 2 5.0 X 51 Ribavirin 3 1 5 16.7 X
12 Pantoprazole 1 0 1 1.0 52 Phenylbutazone 3 0 2 10.0
13 Methoxyflurane 3 4 1 31.8 53 Disulfiram 2 0 9 16.0 X
14 Dorzolamide 2 0 4 4.0 X 54 Zonisamide 17 14 9 134.8 X
15 Diethylcarbamazine 3 0 4 23.0 55 Acetylsalicylic acid 3 0 8 74.0 X
16 Hydroxyurea 4 0 4 10.0 X 56 Ezetimibe 2 1 2 11.7 X
17 Carmustine 1 0 2 3.0 57 Dipyridamole 4 0 7 9.0 X
18 Theophylline 4 3 3 28.1 58 Mercaptopurine 1 0 2 2.0 X
19 Acarbose 3 1 9 26.7 59 Auranofin 1 1 3 10.7 X
20 Floxuridine 1 0 1 1.0 X 60 Tioconazole 1 0 1 34.0 X
21 Valproic Acid 2 1 5 30.7 X 61 Trichlormethiazide 4 1 5 12.7 X
22 Indomethacin 4 3 7 48.1 X 62 Cerulenin 4 0 7 7.0 X
23 Nitisinone 1 0 1 5.0 63 Mimosine 2 1 5 15.7 X
24 Droxidopa 1 9 1 70.3 X 64 Perhexiline 2 0 52 113.0 X
25 Physostigmine 1 0 1 1.0 65 Orlistat 2 1 10 22.7 X
26 Carbimazole 1 0 5 7.0 66 Leflunomide 1 3 3 42.1 X
27 Miglustat 1 0 1 5.0 67 Trilostane 2 2 2 18.4
28 Allopurinol 1 0 3 11.0 68 Aminoguanidine 1 0 2 4.0
29 Trimethoprim 2 0 3 5.0 X 69 Atovaquone 3 0 1 6.0 X
30 Gemcitabine 3 0 85 64.0 X 70 Carvedilol 1 8 1 62.6 X
31 Acetyldigitoxin 1 0 1 1.0 X 71 Desipramine 1 12 1 98.4 X
32 Cefdinir 1 0 2 5.0 X 72 Arsenic trioxide 1 6 1 56.2 X
33 Azelaic Acid 2 1 3 14.7 73 Cyclizine 1 1 2 10.7
34 Pentostatin 1 0 4 4.0 X 74 Dazoxiben 1 0 1 6.0
35 Diclofenac 4 4 6 54.8 X 75 Fomepizole 4 0 15 33.0 X
36 Quinacrine 2 1 4 21.7 X 76 Clomipramine 1 5 4 57.5
37 Monobenzone 1 0 3 7.0 77 Bepridil 2 7 3 56.9 X
38 Sulindac 3 3 9 46.1 X 78 Lithium 3 2 5 46.4 X
39 Amodiaquine 1 0 1 5.0 79 Fidarestat 1 0 7 13.0 X
40 Tiludronate 1 1 3 13.7 X 80 Carbenoxolone 1 0 4 2.0 X

81 Canaline 1 0 2 1.0 X
82 Myo-Inositol 2 0 1 29.0 X
83 Voglibose 1 0 4 7.0
84 Icatibant 1 1 2 10.7 X
85 Tyloxapol 1 0 2 6.0 X

Table S1: List of drugs selected from DrugBank database for human and cancer metabolic
networks. Selection criteria are explained in the main text. Legend : “M”: number of metabolic
targets; “NM”: number of non-metabolic targets; “R”: number of inhibited reactions of the human
metabolic network; “S.E.”: side effect;“X”: the drug acts also on the cancer network; (*): Simvas-
tatin and Atorvastatin are also present in this group (they induce the same metabolic inhibitions as
Pravastatin but they have one and two non-metabolic targets respectively).

3



OBJECTIVE REACTION SYNERGISM
Name Pathway Type Class.

Proline dehydrogenase Arginine and Proline Metabolism New C
C160 transport into the mitochondria Carnitine shuttle Less A
C161 transport into the mitochondria Carnitine shuttle Less A
C180 transport into the mitochondria Carnitine shuttle Less A
C181 transport into the mitochondria Carnitine shuttle Less A
carnitine fatty-acyl transferase Carnitine shuttle Less A
carnitine O-palmitoyltransferase Carnitine shuttle Less A
carnitine O-stearoyl transferase Carnitine shuttle Less A
carnitine octadecenoyl transferase Carnitine shuttle Less A
carnitine transferase Carnitine shuttle Less A
R group transport into the mitochondria Carnitine shuttle Less A
transport into the mitochondria (carnitine) Carnitine shuttle Less A
sterol O-acyltransferase (acyl-Coenzyme A: cholesterol acyltransferase) 1 Cholesterol Metabolism Less A
dephospho-CoA kinase CoA Biosynthesis New A
3’,5’-Cyclic GMP exchange Exchange New E
(R)-Pantothenate exchange Exchange New A
Ceramide 1-phosphate exchange Exchange New A
cholesterol ester exchange Exchange Less A
L-Phenylalanine exchange Exchange New D
Beta oxidation of fatty acid Fatty acid oxidation Less A
Beta oxidation of long chain fatty acid Fatty acid oxidation, peroxisome New A
Beta oxidation of long chain fatty acid Fatty acid oxidation Less A
fatty acyl-CoA desaturase (n-C18:1CoA -> n-C18:2CoA) Fatty acid elongation New A
stearoyl-CoA desaturase (n-C18:0CoA -> n-C18:1CoA) Fatty acid elongation New A
choline phosphatase Glycerophospholipid Metabolism Less F
phosphatidate cytidylyltransferase Glycerophospholipid Metabolism Less F
5’-nucleotidase (GMP) Nucleotides More E
CTP synthase (NH3) Nucleotides Less F
cytidine kinase (ATP) Nucleotides New F
cytidylate kinase (CMP),mitochondrial Nucleotides Less F
GMP reductase Nucleotides New E
guanylate cyclase Nucleotides New E
guanylate kinase (GMP:ATP) Nucleotides New E
nucleoside-diphosphate kinase (ATP:CDP), mitochondrial Nucleotides Less F
ribonucleoside-diphosphate reductase (GDP) Nucleotides More E
aspartate carbamoyltransferase (reversible) Pyrimidine Biosynthesis Less F
carbamoyl-phosphate synthase (glutamine-hydrolysing) Pyrimidine Biosynthesis Less F
CTP synthase (glutamine) Pyrimidine Biosynthesis Less F
dihydoorotic acid dehydrogenase (quinone10) Pyrimidine Biosynthesis Less F
dihydroorotase Pyrimidine Biosynthesis Less F
orotate phosphoribosyltransferase Pyrimidine Biosynthesis Less F
orotidine-5’-phosphate decarboxylase Pyrimidine Biosynthesis Less F
hydroxyacylglutathione hydrolase Pyruvate Metabolism New B
R group artificial flux R Group Synthesis New A
R group to palmitate conversion R Group Synthesis Less A
R total flux R Group Synthesis New A
3-Dehydrosphinganine reductase Sphingolipid Metabolism New A
Ceramide kinase Sphingolipid Metabolism New A
dihydroceramide desaturase Sphingolipid Metabolism New C
serine C-palmitoyltransferase Sphingolipid Metabolism New A
ATP transporter, peroxisomal Transport, Peroxisomal New C
cGMP transport (ATP-dependent) Transport, Extracellular New E
cholesterol ester transporter Transport, Extracellular Less A
crmp hs transport Transport, Extracellular New A
cytidine facilated transport in mitochondria Transport, Mitochondrial Less F
Diphosphate transporter, peroxisome Transport, Peroxisomal New C
fatty acid retinol efflux Transport, Extracellular New A
intracellular transport Transport, Mitochondrial Less F
NADP transporter, peroxisome Transport, Peroxisomal New C
NADPH transporter, peroxisome Transport, Peroxisomal New C
Pantothenate sodium symporter II Transport, Extracellular New A
1-acylglycerol-3-phosphate O-acyltransferase 1 Triacylglycerol Synthesis New A
glycerol-3-phosphate acyltransferase Triacylglycerol Synthesis New A

Table S2: List of the inhibitions on human metabolism obtained by multiple drug solutions.
The reactions are sorted according to the pathway they belong. The solutions are classified as New
inhibition, More selective and Less selective from a comparison with a possible single drug treatment;
this information is reported in the third column. Last columns reports the class of the synergistic
combination which cause the inhibition of the objective reaction (see Figure 2 on the paper).
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Figure S1: Side effects comparison. The histogram analysis of the size effect induced by single
and multiple drug solutions shows that both types of solution have more or less the same order of
magnitude.

Figure S2: Results on cancer metabolic network alone. Like for the human network (see
Figure 3), the plot reports the new inhibitions that synergisms make possible and the inhibitions with
different selectivity with respect to a single drug treatment. Notice how the number of new inhibitions
is significantly higher than in the human metabolism, meaning that the cancer pathways are less
robust (and redundant) than their counterparts in the human network.
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