Supplementary Figure Legends:

Figure S1. Sequence alignment of human VKOR and VKORC1L1. The amino acid sequences of human VKOR and VKORC1L1 were aligned by CLUSTAL W. Completely conserved residues are shown in yellow with red background. Similar residues are shown in white with black background. Conserved loop cysteines are indicated by arrows. The active site CXXC redox motif is indicated by a bold line. Residues reported to be associated with warfarin resistance in patients and studied in this work are indicated by asterisks.

Figure S2. TALENs-mediated VKORC1L1 knockout in HEK 293 cells. (A)

Functional screening of VKORC1L1 knockout HEK293 cells. The black and gray bars represent the concentrations of carboxylated FIXgla-PC in the cell culture medium when cells were fed with KO and vitamin K, respectively. Non-transfected HEK293 cells produce similar level of carboxylated FIXgla-PC when fed with either vitamin K or KO. **(B)** TALENs-mediated gene editing of VKORC1L1 locus in HEK293 cells. Wild-type VKORC1L1 target sequence is shown on the top with the TALENs binding site indicated. The ATG start codon is underlined. Deletions are indicated by dashes. Insertions are indicated by lowercase letters in italic or an "i" and the number of base pairs inserted against a gray background. The sizes of deletions or

1

insertions are indicated on the left. The sequence of the 343-base pair insertion is shown in lowercase letters in italic. In-frame stop-codon is indicated by a bold line.

Figure S3. Large sequence insertion in TALENs-mediated VKORC1L1 genome

editing. (A) A 343-bp nucleotide sequence insertion was identified in one of the TALENs-edited VKORC1L1 loci. The inserted nucleotide sequences are shown in lower case letters and the VKORC1L1 cDNA sequences are shown in bold capital letters. The ATG start codon is shown in red. The translated amino acid sequence is shown under the nucleotide sequence with VKORC1L1 sequence in bold. The first methionine is shown in blue and translation stop codons are indicated by red asterisks. (B) A BLAST search reveals that the 343-bp insert is from chromosome 5.

Figure S4. Distribution of naturally occurring VKOR mutations in the threetransmembrane domain topology model. Amino acid residues that have been found to be mutated in patients requiring high-dose anticoagulants were highlighted in red. Conserved loop cysteines and the active site cysteines are highlighted in green.

Figure S1

В

		Left Target Sequence	Spacer	Right Target Sequence	
WT	ATGGCGGC	TCCCGTCCTGCTAAGAGTGT	CGGTGCCGCGGTGGG	AGCGGGTGGCCCGGTATGC	I AGTG
Δ5	<u>ATG</u> GCGGC	TCCCGTCCTGCTAAGAGTGT	CCGCGGTGGG	AGCGGGTGGCCCGGTATGC	AGTG
Δ8	<u>ATG</u> GCGGC	TCCCGTCCTGCTAAGAGTGT	CGGTGGG	AGCGGGTGGCCCGGTATGC	AGTG
Δ14	ATGGCGGC	TCCCGTCCTGCTAAGAGTG-	GG	AGCGGGTGGCCCGGTATGC	AGTG
+4	<u>ATG</u> GCGGC	TCCCGTCCTGCTAAGAGTGT	CGGTGCCG <i>gcgg</i> CGG	TGGGAGCGGGTGGCCCGGT	ATGCAGTG
+343	<u>ATG</u> GCGGC	TCCCGTCCTGCTAAGAGTGT	CGGTGCCGC <i>i343</i> GG	TGGGAGCGGGTGGCCCGGT	ATGCAGTG

Figure S2

1

Basic Local Alignment Search Tool

Nucleotide Sequence (343 letters)

Query II Description	lcl 50575 None		Databas Des	e Name Hi cription	Human G+T (2 databases) Program BLASTN				
Molecule type Query Lengtl	nucleic acid 343			2.	2.27+				
Genomic sequ	iences	<u>Max</u> score	<u>Total</u> score	<u>Query</u> coverag	<u>E</u> value	<u>Max</u> ident	Links		
NT_006713.15	lomo sapiens chromosome 5 enomic contig, GRCh37.p5 Primary ssembly	<u>634</u>	634	100%	2e-179	100%			

Alignments

>ref NT 006713.15 D Homo sapiens chromosome 5 genomic contig, GRCh37.p5 Primary Assemb Length=42230487

Features flanking this part of subject sequence: 374428 bp at 5' side: transmembrane protein 161B 79111 bp at 3' side: myocyte-specific enhancer factor 2C isoform 1											
Score = 634 bits (343), Expect = 2e-179 Identities = 343/343 (100%), Gaps = 0/343 (0%) Strand=Plus/Minus											
	Query	1	${\tt ATGACTCTTAGGGAACTGGATCTACTCAATATCTAAGTTCCAGAACAAAATCTACAGATT}$	60							
	Sbjct	38533669	ATGACTCTTAGGGAACTGGATCTACTCAATATCTAAGTTCCAGAACAAAATCTACAGATT	38533610							
	Query	61	${\tt TGTAAGAGTTAAGCTTTCTTTTATGAACATTGTTTAAATTTAGAAAAGCATCATCTGTCT$	120							
	Sbjct	38533609	tgtaagagttaagctttcttttatgaacattgtttaaatttagaaaagcatcatctgtct	38533550							
	Query	121	TGCAACCTCACTTTGTGCTTAAGAGATACAGTTCTAGAACTAGTTTTTGTAATTTGTATT	180							
	Sbjct	38533549	TGCAACCTCACTTTGTGCTTAAGAGATACAGTTCTAGAACTAGTTTTTGTAATTTGTATT	38533490							
	Query	181	${\tt TTGTTTTGGTTCTAGAAGTAGTATTGATGCTTGCCATCTTACTATTTAGTAAAAGTTGAA$	240							
	Sbjct	38533489	TTGTTTTGGTTCTAGAAGTAGTATTGATGCTTGCCATCTTACTATTTAGTAAAAGTTGAA	38533430							
	Query	241	${\tt TTCTAGATAATTATCTTTCTTTTTCCTACCTACCACGAGGAATTAGAGAGAAAGGGAAATT$	300							
	Sbjct	38533429	TTCTAGATAATTATCTTTCTTTTTCCTACCTACCACGAGGAATTAGAGAGAAAGGGAAATT	38533370							
	Query	301	AAAAAAAATCAGTTTACTATAATGTGATAGCTATGAAAAAGAT 343								
	Sbjct	38533369	AAAAAAAATCAGTTTACTATAATGTGATAGCTATGAAAAAGAT 38533327								

	М	A	A	Ρ	v	L	L	R	v	S	v	Ρ	Η	D	S	*	G	Т	G	S	
61	ac T	tca Q	ata Y	tct L	aag S	ttc S	cag R	aac T	aaa K	atc S	tac T	aga D	ttt L	gta *	aga E	gtt L	aag S	ctt F	L L	ttta L	120
121	tg *	aac T	att L	gtt F	taa K	att F	tag R	aaa K	agci A	atc S	atc S	tgt V	ctt L	gca Q	acc P	tca H	ctt F	tgt V	gct L	taag K	180
181	ag R	ata Y	cag S	ttc S	tag R	aac T	tag S	ttt F	ttg C	taa N	ttt L	gta Y	ttt F	tgt V	ttt L	ggt V	tct L	aga E	agt: V	agta V	240
241	tt L	gat M	gct L	tgc A	cat I	ctt L	act L	att F	tag S	taa K	aag S	ttg *	aat I	tct L	aga D	taa N	tta Y	L L	ttc S	tttt F	300
301	tc S	cta Y	cct L	acc P	acg R	agg G	aat I	tag R	aga E	gaa K	ggg G	aaa N	tta *	aaa K	aaa K	atc S	agt V	tta Y	cta Y	taat N	360

ATGGCGGCTCCCGTCCTGCTAAGAGTGTCGGTGCCGCatgactcttagggaactggatct 60

361 gtgatagctatgaaaaagatggt**GGGAGCGGGTGGCCCGGTATGCAGTGTGCGCTGCCGG** 420 V I A M K K M V G A G G P V C S V R C R

Figure S3

Figure S4