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SI Figure S1, related to Figure 5 – Montage of Aqp structures (grey ribbon) with bound 
detergents or lipids (yellow) in the crystal structure. 
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SI Figure S2A, related to Figure 2 Protein-lipid headgroup (red) and acyl tail (green) 
interactions for 3M9I for the electron crystallographic structure and compared with the 
contacts made during the CG and atomistic simulations. The contacts are coloured onto their 
corresponding residues in a white-red gradient for the headgroups or a white-green gradient 
for the lipid tails. 
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SI Figure S2B, related to Figure 2 

Comparison of the contacts for a monomer in complex with lipids. In this case, contacts for 
the EM system are calculated from atomistic simulations of the EM protein-lipid complex 
and compared with the CG and AT simulations. 
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SI Figure S3, related to Figure 3 – (A) Lipid density in the upper (i.e. extracellular) leaflets 
around 2B6O. The phosphate density is shown on a white to red gradient, with an annulus of 
lipids clearly apparent. The observed density is compared to the lipids resolved in the 
electron crystals, with the phosphate atoms of the resolved lipids shown in black spheres. (B) 
The thickness of the lipid bilayer around 2B6O with DMPC. The thickness of the DMPC 
bilayer remains at a constant ~35 Å.  
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SI Figure S4, related to Figure 6 – Sequence alignment of all 40 Aqp structures. The 
contacts made by residues with the acyl tails during the simulations are coloured on a green 
gradient. 
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SI Figure S5, related to Figure 5 – The mapping of the β-OG detergent from atomistic to 
CG. A snapshot from a CG simulation of GlpF in the presence of β-octyl glucoside (β-OG) 
detergent micelles, indicating how the detergent molecules may act to replicate the membrane 
environment. The mapping of the β-OG detergent from atomistic to CG is also shown. 
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SI Table S1, related to Figure 6 – Aquaporin Structures Investigated 
 
AQP PDB ID Species Exp Method Resolution Lipid/Detergent REF
AQP0 1YMG Bos Taurus X-ray 2.24 βNG (1) 
AQP0 2C32 Bos Taurus X-ray 7.01 None (2) 
AQP0 1SOR Ovis aries Electron 3.0/3.5 None (3) 
AQP0 2B6O Ovis aries Electron 1.90 DMPC (4) 
AQP0 2B6P Ovis aries Electron 2.40 None (4) 
AQP0 3M9I Ovis aries Electron 2.50 DSPE (5) 
AQP1 1J4N Bos taurus X-ray 2.20 βNG (6) 
AQP1 1FQY Homo sapiens Electron 3.80 None (7) 
AQP1 1H6I Homo sapiens Electron - None (8) 
AQP1 1IH5 Homo sapiens Electron 3.70 None (9) 
AQP4 3GD8 Homo sapiens X-ray 1.80 βOG (10) 
AQP4 2D57 Rattus norvegicus Electron 3.20 None (11) 
AQP4 2ZZ9 Rattus norvegicus Electron 2.80 DSPE (12) 
AQP4 3IYZ Rattus norvegicus Electron 10.00 None (13) 
AQP5 3D9S Homo sapiens X-ray 2.00 6-PS (14) 
AqpM 3NE2 A. fulgidus X-ray 3.00 βOG Lee 
AqpM 2EVU M. marburgensis X-ray 2.30 βOG (15) 
AqpM 2F2B M. marburgensis X-ray 1.68 None (15) 
AqpZ 3LLQ A. tumerfaciens X-ray 2.01 None Liu? 
AqpZ 1RC2 E. coli X-ray 2.50 βOG (16) 
AqpZ 2ABM E. coli X-ray 3.20 DSPE/βOG (17) 
AqpZ 2O9D E. coli X-ray 2.30 HSG/HSH (18) 
AqpZ 2O9E E. coli X-ray 2.20 None (18) 
AqpZ 2O9F E. coli X-ray 2.55 None (18) 
AqpZ 2O9G E. coli X-ray 1.90 βOG (18) 
AqpZ 3NK5 E. coli X-ray 2.40 βOG (19) 
AqpZ 3NKA E. coli X-ray 2.50 βOG (19) 
AqpZ 3NKC E. coli X-ray 3.10 βOG (19) 
GlpF 1FX8 E. coli X-ray 2.20 βOG (20) 
GlpF 1LDA E. coli X-ray 2.80 βOG (21) 
GlpF 1LDF E. coli X-ray 2.10 βOG (21) 
GlpF 1LDI E. coli X-ray 2.70 βOG (21) 

PfAQP 3C02 P. falciparum X-ray 2.05 βOG (22) 
PIP2 1Z98 S. oleracea X-ray 2.10 None (23) 
PIP2 2B5F S. oleracea X-ray 3.90 None (23) 
PIP2 3CLL S. oleracea X-ray 2.30 None (24) 
PIP2 3CN5 S. oleracea X-ray 2.05 None (24) 
PIP2 3CN6 S. oleracea X-ray 2.95 None (24) 
Aqy1 2W1P P. pastoris X-ray 1.40 βOG (25) 
Aqy1 2W2E P. pastoris X-ray 1.15 βOG (25) 
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