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Supplemental Information (SI): Impact of Tumor Progression on Cancer

Incidence Curves

Mathematical Methods

We briefly summarize the mathematical development for the MSCE model (Figure 1). Tumor

initiation is modeled as a two-hit Poisson process. The two hits may represent inactivation of

both alleles of a tumor suppressor gene or any two other rate limiting mutations sufficient to

provide a growth advantage and loss of homeostatic control. After the first hit, cells are con-

sidered pre-initiated, and assigned a label P∗. After a second hit, a pre-initiated cell becomes

initiated, or premalignant, and is assigned a label P . The first clonal expansion process repre-

sents clonal growth or extinction of P cells through a birth-death-migration process with cell

division rate αP , cell death/differentiation rate βP , and a per cell malignant transformation rate

µ2 for malignant cells, each assigned a label M . The MSCE model assumes a second clonal

expansion of M cells occurs through a birth-death-detection process with cell division rate αM ,

cell death/differentiation rate βM , and malignant transformation rate ρ per cell per year. The

simplified version of the MSCE model used in previous studies [1–4] (Figure 1, elevated dashed

lines) assumes a lag-time which represents the time from first M cell to time of cancer diagnosis.

Backward Kolmogorov equations for the MSCE model hazard, hMSCE

N(t) = number of renewing normal stem cells in a tissue at time t

P ∗(t) = number of pre-initiated cells at time t

P (t) = number of premalignant (initiated) cells at time t

M(t) = number of malignant (preclinical) cells (prior to detection) at time t

C(t) = number of cancer cells (after detection) at time t
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For clinical detection, we will employ the following indicator function, D(t) ,

D(t) =


0 if no cancer detected clinically by time t

1 otherwise ie. C(τ) > 0 for some τ ≤ t

Beginning with a single pre-initiated (P∗), premalignant (P ), or malignant (M) cell at time τ ,

the probability distribution for number of cells at time t ≥ τ , is represented by the generating

function Φ
P∗ , Φ

P∗ , or ΦM , respectively, with

ΦM (y3, z; τ, t) = E[y
M(t)
3 zD(t)|M(τ) = 1, D(τ) = 0] (1)

ΦP (y2, y3, z; τ, t) = E[y
P (t)
2 y

M(t)
3 zD(t)|P (τ) = 1,M(τ) = 0, D(τ) = 0] (2)

Φ
P∗ (y1, y2, y3, z; τ, t) = E[y

P ∗(t)
1 y

P (t)
2 y

M(t)
3 zD(t)|P ∗(τ) = 1, P (τ) = 0,M(τ) = 0, D(τ) = 0] (3)

And the generating function for the entire process Ψ starting from normal cells is the following

Ψ(y1, y2, y3, z; τ, t) = E[y
P ∗(t)
1 y

P (t)
2 y

M(t)
3 zD(t)|P ∗(τ) = 0, P (τ) = 0,M(τ) = 0, D(τ) = 0] (4)

=
∑
i,j,k,l

yi1y
j
2y
k
3z
lP (i, j, k, l) (5)

where P (i, j, k, l) = Pr[P ∗(t) = i, P (t) = j,M(t) = k,D(t) = l|P ∗(τ) = 0, P (τ) = 0,M(τ) = 0, D(τ) = 0],

and l = {0, 1}. For constant rates and number of normal stem cells N(t) = N , the generating

functions satisfy the following Kolmogorov backward equations

∂ΦM (y3, z; τ, t)

∂τ
= −αM Φ2

M
(y3, z; τ, t)− βM

− zρΦM (y3, z; τ, t) + [αM + βM + ρ]ΦM (y3, z; τ, t)

∂ΦP (y2, y3, z; τ, t)

∂τ
= −αP Φ2

P
(y2, y3, z; τ, t)− βP

+ [αP + βP + µ2]ΦP (y2, y3, z; τ, t)− µ2ΦP (y2, y3, z; τ, t)ΦM (y3, z; τ, t)
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∂Φ
P∗ (y1, y2, y3, z; τ, t)

∂τ
= −µ1ΦP∗ (y1, y2, y3, z; τ, t)[ΦP (y2, y3, z; τ, t)− 1]

∂Ψ(y1, y2, y3, z; τ, t)

∂τ
= −µ0NΨ(y1, y2, y3, z; τ, t)[ΦP∗ (y1, y2, y3, z; τ, t)− 1]

In the main text, we wished to solve for the overall survival function (for cancer detection),

starting at time 0, which in our notation is

SMSCE (t) = 1− PMSCE (t) = Pr[D(t) = 0|P ∗(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0]

= Ψ(1, 1, 1, 0; 0, t)

where PMSCE (t) is the probability of a cancer detection at time t,

PMSCE (t) = Pr[D(t) = 1|P ∗(0) = 0, P (0) = 0,M(0) = 0, D(0) = 0]

We will here denote ΦM (1, 0; τ, t) ≡ ΦM (τ, t), ΦP (1, 1, 0; τ, t) ≡ ΦP (τ, t), Φ
P∗ (1, 1, 1, 0; τ, t) ≡

Φ
P∗ (τ, t), and Ψ(1, 1, 1, 0; τ, t) ≡ Ψ(τ, t). and a dot designating a first derivative with respect to

t. The hazard function, i.e., the rate at which cancer is detected in individuals who have not

been diagnosed before, is given by

hMSCE (t) = − ṠMSCE (t)

SMSCE (t)
= −Ψ̇(0, t)

Ψ(0, t)
= − d

dt
ln[Ψ(0, t)] (6)

For fixed t, this boundary value system of coupled PDEs can be converted into an initial value

problem (IVP) with the change of variables u = t − τ , where u is the “running” time. This

redefinition and equations hereafter follow the method used by Crump et al. 2005 [5]. De-

fine the following variables for the new IVP: Y1(u, t) = ΦM (τ, t), Y2(u, t) = Φ̇M (τ, t), Y3(u, t) =

ΦP (τ, t), Y4(u, t) = Φ̇P (τ, t), Y5(u, t) = Φ
P∗ (τ, t), Y6(u, t) = Φ̇

P∗ (τ, t), Y7(u, t) = Ψ(τ, t), Y8(u, t) =

−Ψ̇(τ, t)/Ψ(τ, t) with corresponding ICs Y1(0, t) = Y3(0, t) = Y5(0, t) = Y7(0, t) = 1,
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Y4(0, t) = Y6(0, t) = Y8(0, t) = 0, and Y2(0, t) = −ρ.

dY1(u, t)

du
= βM − (αM + βM + ρ)Y1(u, t) + αMY

2
1 (u, t) (7)

dY2(u, t)

du
= 2αMY1(u, t)Y2(u, t)− (αM + βM + ρ)Y2(u, t) (8)

dY3(u, t)

du
= βP + µ2Y1(u, t)Y3(u, t)− (αP + βP + µ2)Y3(u, t) + αP Y

2
3 (u, t) (9)

dY4(u, t)

du
= 2αP Y3(u, t)Y4(u, t) + µ2(Y4(u, t)Y1(u, t) + Y3(u, t)Y2(u, t))− (αP + βP + µ2)Y4(u, t)

(10)

dY5(u, t)

du
= µ1Y5(u, t)(Y3(u, t)− 1) (11)

dY6(u, t)

du
= µ1(Y6(u, t)Y3(u, t)− Y6(u, t) + Y5(u, t)Y4(u, t)) (12)

dY7(u, t)

du
= µ0NY7(u, t)(Y5(u, t)− 1) (13)

dY8(u, t)

du
= −µ0NY6(u, t) (14)

These 8 ODEs can be solved numerically to obtain

hMSCE (t) = Y8(t, t) and SMSCE (t) = Y7(t, t)

Approximation of the MSCE model: Derivation of µ
eff

2 , tlag, T1, T
eff

1 , T2

From the backward Kolmogorov equations for the 4-stage MSCE model derived in the pre-

vious section we have

∂ΦP (τ, t)

∂τ
= −αP Φ2

P
(τ, t)− βP + [αP + βP + µ2]ΦP (τ, t)− µ2ΦP (τ, t)ΦM (τ, t)

⇒ ∂ΦP (τ, t)

∂τ
= −αP Φ2

P
(τ, t)− βP + [αP + βP + µ2(1− ΦM (τ, t))]ΦP (τ, t) (15)

This has the same form as the backward equation for the 3-stage MSCE-1 model with the
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mutation rate µ2 from MSCE-1 assuming a time-dependent form, i.e,

µ2 → µ2(1− ΦM (τ, t)) = µ2(1− SM (u)) (16)

where u = t− τ and SM (u) is the “survival function” for cancer detection of a preclinical cancer

clone a time u since the clone was born (ie. τ is the time the first malignant cell of the clone

was transformed). This is defined as (see full derivation using Kolmogorov forward equations in

Luebeck et al. 2002 [1])

SM (u) = 1 +
1

αM

pM qM e
−p

M
u − qMpM e−qM u

qM e
−p

M
u − pM e−qM u (17)

pM =
1

2
(−(αM − βM − ρ)−

√
(αM − βM − ρ)2 + 4αMρ) (18)

qM =
1

2
(−(αM − βM − ρ) +

√
(αM − βM − ρ)2 + 4αMρ) (19)

Let p∞ be the probability that a single preclinical clone initiated at time τ eventually becomes

detected:

p∞ = lim
u→∞

(1− SM (u)) ≈ 1− βM

αM

i.e., as u→∞, SM (u) approaches approximately βM /αM , which is the probability of extinction

of the preclinical clone. From this we have that
1−S

M
(u)

p∞
→ 1 as u→∞. Hence, the u dependent

mutation rate µ2(1−SM (u)) is bounded between 0 and approximately µ2(1−βM /αM ) = µ2p∞ ≡

µ
eff

2 , which takes into account the non-extinction of small preclinical clones before they are

detected.

Thus, for fixed t, the PDE from Eq. (15) that we wish to integrate over [0, t] can be written as

∂ΦP (τ, t)

∂τ
= −αP Φ2

P
(τ, t)− βP +

[
αP + βP + µ

eff

2

(
1− SM (u)

p∞

)]
ΦP (τ, t) (20)

with the initial condition ΦP (t, t) = 1.

Assuming (αM −βM )� (αP −βP ), the function
1−S

M
(u)

p∞
has a steep ascent from near lower
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bound of 0 to upper bound of 1, with an inflection point u∗ at
1−S

M
(u∗)

p∞
= 1

2 +O(ρ). For small

ρ, u∗ can be approximated as the following

d2SM (u)

du2
= 0 ⇒ u∗ = − ln(−pM /qM )

pM − qM
= − ln(αMρ/(αM − βM )2)

αM − βM

+O(ρ)

We now aim to show that this time u∗ is approximately the mean sojourn time of a surviving

preclinical tumor. As mentioned in the main text, the main effect of a preclinical tumor progres-

sion (the second clonal expansion in the MSCE model) on cancer incidence is a delay (or lag) of

time for a cancer clone to grow from a single malignant cell into a detectable tumor, conditional

that it doesn’t become extinct. Let T be the random sojourn time from transformation of a

single malignant cell to tumor detection. Again since SM (u)→ βM /αM , the proper cumulative

distribution function for T is given by

Pr[T ≤ u] =
1− SM (u)

p∞
→ 1 as u→∞

Since T only takes non-negative values, we can use the following fact

E[T ] =

∫ ∞
0

Pr[T ≥ u]du =

∫ ∞
0

1− 1− SM (u)

p∞
du

Then this mean sojourn time of a surviving tumor is defined as

T2 ≡ E[T ] =

∫ ∞
0

(
1− 1− SM (u)

p∞

)
du = −

ln
(

q
M
/(−p

M
)

1+q
M
/(−p

M
)

)
(−pM )

= − ln(αMρ/(αM − βM )2)

αM − βM

+O(ρ).

(21)

Therefore, the point of inflection u∗ of the function
1−S

M
(u)

p∞
equals approximately T2 when ρ is

very small. We will continue by approximating
(
1−S

M
(u)

p∞

)
in Eq. (20) by a piecewise constant

function on [0, t] such that

1− SM (u)

p∞
=


0 if u ∈ [0, tlag)

1 if u ∈ [tlag, t]

(22)
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where tlag < t will be set equal to T2. First, we rewrite our ODE for fixed t as before in terms

of u = t− τ and solve on the first interval [0, tlag] with initial condition ΦP (0, t) = 1:

dΦP (u, t)

du
= −αP Φ2

P
(u, t)− βP +

[
αP + βP + µ

eff

2 · 0
]

ΦP (u, t)

⇒ dΦP (u, t)

du
= −αP Φ2

P
(u, t)− βP + [αP + βP ] ΦP (u, t)

⇒ ΦP (u, t) = 1 for all u ∈ [0, tlag)

Next, on [tlag, t], we are solving for a shifted 2-stage survival function with initial condition

ΦP (tlag, t) = ΦP (0, t− tlag) = 1. (See Luebeck et al. 2002 for solution details [1])

dΦP (u, t)

du
= −αP Φ2

P
(u, t)− βP +

[
αP + βP + µ

eff

2

]
ΦP (u, t)

⇒ ΦP (u, t) =

(
qP − pP

qP e
−p

P
(u−tlag) − pP e−qP (u−tlag)

)µ1/αP

for u ∈ [tlag, t]

with

pP =
1

2
(−(αP − βP − µ

eff

2 )−
√

(αP − βP − µ
eff

2 )2 + 4αPµ
eff

2 ), (23)

qP =
1

2
(−(αP − βP − µ

eff

2 ) +

√
(αP − βP − µ

eff

2 )2 + 4αPµ
eff

2 ). (24)

The mathematical approximation for the MSCE model takes the following form

hMSCE (t) ≈ heff

MSCE−1
(t) = µ0X

1−

(
qP − pP

qP e
−p

P
(t−tlag) − pP e−qP (t−tlag)

)µ1/αP

 , (25)

with µ
eff

2 ≡ µ2(1− βM /αM ) and tlag ≡ T2

Therefore, we can compute an analytical approximation to the MSCE model hazard function

for incidence by using the form of the hazard of the MSCE-1 model, hMSCE−1(t) (See Jeon et
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al. 2008 for full derivation not given here) and replacing µ2 with µ
eff

2 ≡ µ2(1 − βM /αM ) and

time t with t− tlag ≡ t−T2. This equivalency can be seen from the derivation above containing

the solution of ΦP (u, t) on [tlag, t] with guaranteed survival from [0, tlag]. This approximation

implicitly assumes that, conditional on non-extinction, the first surviving malignancy in the

tissue is eventually the first to be observed, described further in the main text. Alongside this

altered, effective mutation rate, the time shift by the mean sojourn time of the first surviving

tumor, T2 will push the MSCE-1 type hazard function to the right to coincide with the actual

MSCE hazard curve. Figure 2 in the main text displays the comparison between this analytical

approximation and the numerical MSCE hazard solution.

Analogous to the derivation for this mean sojourn time of a malignant clone conditioned on

survival, we can compute other sojourn times, as presented in Table 1. The first, T1, refers

to the mean time from the initiation of a premalignant cell to the appearance of the first

malignant cell from this premalignant cell’s progeny. The survival function for this process

SP (u) corresponds to the usual 3-stage MSCE-1 model with malignant transformation rate

µ2, defined analogously to Eq. (17) with premalignant parameters. Next, T
eff

1 refers to the

mean time from the initiation of a premalignant cell until, after it clonally expands, the first

transformation of a malignant, preclinical cell conditional that this malignant cell’s clone will

survive. The survival function for this process S
eff

P (u) corresponds to the usual 3-stage MSCE-1

model with malignant transformation rate µ
eff

2 = µ2p∞ (see Eq. (17)), which as discussed above,

guarantees the non-extinction of small preclinical clones before they are detected. Therefore,

similar to Eq. (21), we compute these two other mean sojourn times as follows

T1 =

∫ ∞
0

(
1− 1− SP (u)

p∞

)
du ≈ − ln(αPµ2/(αP − βP )2)

αP − βP

. (26)

T
eff

1 =

∫ ∞
0

(
1−

1− Seff

P (u)

p∞

)
du ≈ − ln(αPµ

eff

2 /(αP − βP )2)

αP − βP

. (27)
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CRC males λ x 10-4 gP gM μ2
ef

 x 10-6

αP [2, 50] [2.13, 2.13] [0.162, 0.162] [2.58, 2.59] [0.15, 3.76]
αM [25,100] [2.13, 2.13] [0.162, 0.162] [2.52, 2.67] [0.73, 0.77]
ρ   [10-6,10-8] [2.13, 2.13] [0.162, 0.162] [2.08, 3.07] [0.75, 0.76]

CRC females λ x 10-4 gP gM μ2
ef

 x 10-6

αP [2, 50] [1.57, 1.57] [0.149, 0.149] [2.04, 2.05] [0.32, 8.09]
αM [25,100] [1.57, 1.57] [0.149, 0.149] [1.92, 2.17] [1.61, 1.62]
ρ   [10-6,10-8] [1.57, 1.57] [0.149, 0.149] [1.61, 2.46] [1.61, 1.63]

Table S1: Sensitivity analysis to test the effect of uncertainty in the cell division rates αP and
αM , and in the detection rate ρ on the estimated MSCE model parameters.

Parameter estimates, correlations, and uncertainty

Fits to SEER incidence data In the following we describe the fits of SEER-9 incidence data

of CRC, GaC, PaC, and EAC using both the MSCE model and its approximation (referred to

as MSCE-1) [6]. A comparison shows that the estimated lag-time parameters for the MSCE-

1 approximation are in generally good agreement with corresponding estimates for T2 in the

MSCE model assuming biologically plausible values for the cell division rates of premalignant

cells (αP ∈ [2, 50] per year) and malignant cells (αM ∈ [25, 100] per year, Wilson et al., 1993 [7])

and for the observation event rate ρ ∈ [10−6, 10−8] per cell per year. See Table S1 for the results

of the sensitivity analysis of λ, gP , gM , µ
eff

2 on choices for αP , αM , ρ.

In general, the exact solution of the MSCE hazard function with two consecutive clonal

expansions may be difficult to distinguish from a model with a single clonal expansion plus a

time lag. This also means that the parameters of the model in Figure 1, in particular, the

parameters that pertain to preclinical cancer progression, may be difficult to estimate from

cancer incidence data alone. Additional assumptions such as equality of the mutation rates µ0,

µ1 and µ2, replacing some of the parameters with measured values, or inclusion of screening

data on the number and sizes of preclinical tumors, are required to estimate all relevant model

parameters. For EAC females, we fixed the parameter µ
eff

2 to the MCMC estimate obtained

for males (4.65× 10−6). This choice stabilized the estimation and yielded a sex ratio of 2:1 for
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the BE rate ν consistent with the male-to-female BE prevalence ratios seen in epidemiological

studies [8, 9].

Figures S1 (a-h) show scatterplots of the Markov Chain Monte Carlo (MCMC) samples

drawn from the posterior distributions of the MSCE model parameters for CRC, GaC, PaC,

and EAC using uniform prior distributions defined on positive intervals (0, C] with finite but

large upper limits C. We ran 8 independent chains with 10000 cycles each. For EAC, we doubled

the number of cycles for each run. All runs were started with the parameters set at (or near)

their respective maximum likelihood estimates (MLEs) and appeared to converge rapidly after

a short 1000 cycle burn-in period. The pairwise scatterplots also show the locations/values of

the parameters associated with the 10 best likelihood values (red marks) found in each MCMC

batch. These values are generally very close to the MLEs when the likelihood maximization

yielded stable parameter estimates. The parameter T2, defined in the previous section, is the

mean sojourn time of a malignancy. It is not a free parameter but a composite quantity defined

by Eq. (21).

Birth cohort and calendar year trends

We used a modified age-period-cohort (APC) approach to adjust the incidences for secular

trends. While the period and cohort effects are modeled non-parametrically, the age effect

follows the hazard function of the MSCE model and is therefore parametrically constrained.

This finesses a non-trivial identifiably problem of the APC approach and allows us to separate

cleanly age, period and cohort effects (see Luebeck and Moolgavkar, 2002; Meza et al., 2008,

2010 [1, 3, 4]). Briefly, the APC ansatz assumes an incidence function [4]

Ibc(t) = Θb Θc hMSCE (t) (28)

where Θb and Θc are coefficients that modify the MSCE-2 hazard hMSCE (t).

The calendar year coefficients cj and birth cohort coefficients bi were estimated via maximum

likelihood jointly with all other model parameters with the exception of αM and ρ, which were
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kept fixed (see Figure 1 and text). Figures S2 a and b show the estimated birth cohort coefficients

(left panel) and calendar year coefficients (right panel). The birth cohort 1920-1924 was used

as a reference and anchored to 1. Similarly, the calendar year 1985 was used as a reference, i.e.,

c1985 = 1 for GaC and PaC. For EAC we set c1975 = 1 because of the very strong increase of

the incidences with calendar year. For CRC no calendar year reference was necessary since the

observed period effects are likely due to colon screening which rarely occurs in people 50 years

or younger. Thus, CRC had an internal calendar year anchoring as the coefficients cj were set

to 1 for all ages less than 54 and 57 for females and males, respectively.

For CRC and GaC there appears to be an increase of the incidence with younger cohorts

(after 1955), however the confidence intervals are very wide and the effect highly uncertain. In

contrast, with the exception of PaC, which remains relatively flat over the past 30 years, we find

strong and significant increases of EAC incidence with calendar year (6-7 fold, for males and 4

fold for females) and moderate but significant decreases for CRC and GaC. Secular trends for

CRC are discussed in detail in Meza et al. (2010) [4].

Figures S3 (a-h) show age-specific incidences of CRC, GaC, PaC and EAC in SEER-9 from

1975-2008 by gender and 5 year calendar periods. The left panels show the raw (unadjusted)

incidences whereas the right panels show period and cohort adjusted incidence curves as well

as the MSCE model prediction. For CRC, GaC and PaC both the exponential and the linear

behavior of the adjusted curves stand out. For EAC, the exponential-linear behavior is masked

by the presence of an additional step in the model which represents a tissue conversion from

normal squamous epithelium to Barrett’s metaplasia.
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Figure S1 a and b: Scatterplots of the Markov Chain Monte Carlo (MCMC) samples drawn from
the posterior distribution of the model parameters for male (a) and female (b) CRC incidence
in SEER-9. For further details, see text.
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Figure S1 c and d: Same as S1 a and b, but for GaC incidence.
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Figure S1 e and f: Same as S1 a and b, but for PaC incidence.
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Figure S1 g and h: Same as S1 a and b, but for EAC incidence.
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Figure S2 a: Maximum likelihood estimates for the birth-cohort coefficients. See Eq.(28).
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Figure S2 b: Maximum likelihood estimates for the calendar-year coefficients. See Eq.(28).
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Figure S3 a: Left panel: unadjusted CRC incidences among males from SEER-9 by 5 year
calendar periods; right panel: adjusted incidences using the estimated calendar-year and birth-
cohort coefficients, and the MSCE model fit (thick black line).
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Figure S3 b: Same as S3 a, but for CRC females.
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Figure S3 c: Same as S3 a, but for GaC males.
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Figure S3 d: Same as S3 b, but for GaC females.
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Figure S3 e: Same as S3 a, but for PaC males.
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Figure S3 f: Same as S3 b, but for PaC females.
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Figure S3 g: Same as S3 a, but for EAC males.
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