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Software Validation
To ensure that the software implementing our Markov chain Monte
Carlo (MCMC) method was correctly encoded, we used the soft-
ware validation technique of Cook et al. (1). The method involves
the following steps, performed repeatedly.

i) Draw the parameters of the model from the prior distribution.

ii) Simulate data by drawing from the likelihood model, given
these parameters.

iii) Sample from the posterior distribution for the parameters,
using MCMC.

iv) Estimate the posterior quantiles of the parameters drawn at
step i (or functions of these parameters), using the sample
drawn at step iii.

The posterior quantiles from multiple repetitions are then pro-
cessed to generate a statistic zθ for each parameter or function of
parameters. If the software is implemented correctly, this statistic
should have a standard normal distribution, and extreme values are
detected graphically.
To keep the simulated datasets relatively small and ensure

computational feasibility, we selected the following prior dis-
tributions. (Note these prior distributions differ from those used
in the larger-scale analyses described in the main text and in SI
Materials and Methods below.) The number of initial nests was
selected uniformly in the range 1–10, and the positions of initial
nests were distributed uniformly on the rectangle bounded by
x coordinates 470,000 and 530,000 and y coordinates 6,920,000
and 6,970,000. The vector of mixture proportions γ (defined in SI
Materials and Methods below, together with the other parameters
discussed in this section) was selected from a uniform Dirichlet
distribution, and the SDs of jump distances σXi and σYi (for i = 1,
2, 3, 4) were selected from an inverse gamma distribution with
shape parameter 2.0 and rate parameter 98.0. (The latter prior
effectively constrains the average founding distance in the range
1 m to 1 km.) Treatment and targeted search efficacies α0 and α1
were selected uniformly in the range (0.8, 1.0), and the efficacies
of passive detection α2 to α5 were selected uniformly in the in-
terval (0.01, 0.1), subject to the constraint that α2 ≥ α3 ≥ α4 ≥ α5.
Constraining the passive detection probabilities above 0.01 helps
limit the rate of expansion, and constraining them below 0.1
prevents most simulated invasions from ending in rapid eradication.
Relative establishment probabilities β2 to β4 were selected uni-
formly in the interval (0,1) subject to the constraint β2 ≥ β3 ≥ β4.
The reproductive rate (number of nests founded per nest per
month) λ was drawn from a gamma distribution with shape pa-
rameter 5.0 and rate parameter 15.0. Again, this prior confines λ to
a range that limits expansion but also limits the probability of rapid
eradication.
After each set of parameter values was drawn from the prior

distribution, an invasion was simulated, consisting of a 36-mo
unhindered expansion phase without any detections or treatment,
followed by a 60-mo period during which the simple eradication
strategy described in SI Materials and Methods below was simu-
lated. As in the larger analyses described in the main text and
sections below, after each nest was founded there was a 6-mo
period during which the nest was not detectable (but could still
be destroyed by treatment), and a simultaneous 8-mo maturation
period before the nest can itself found other nests.
We drew 100 independent sets of parameters from the prior

distribution, and for each such draw we generated an MCMC

sample of 1,000 draws from the posterior distribution, after dis-
carding 1,000 draws as burn-in. Each draw from the posterior
distribution was selected uniformly at random from a sequence
of 300,000 updates.
Evaluations of the zθ statistic are shown in Fig. S1. The rows

labeled QX and QY each contain ten zθ statistics for the 5%,
15%, . . ., 95% percentiles of the distribution of founding distances
in the X and Y directions, evaluated using γ and σX for QX and
using γ and σY for QY. Note that the parameters in each row are
correlated, especially the percentiles of founding distances. No
extreme values are apparent, and thus we find no evidence of
errors in the software.

SI Results
In this section we present additional graphical summaries of results
referred to in the main manuscript as Figs. S2–S7. These were
estimated using the same MCMC samples of size 10,000 used in
the main manuscript.

SI Materials and Methods
Data. For each detected nest i = 1, . . ., N, the available data
consists of a position (xi, yi), a date of discovery ti and a type of
discovery di positions consist of an x and y coordinate, where
x coordinates are integers in the range 377,638–561,437 and
y coordinates are integers in the range 6,843,963–7,035,887.
Units are meters, so the rectangle considered is ∼184 km by
192 km, somewhat larger than the area in which nests have been
found. The current model discretises time into months, but it
could be easily modified for a finer time scale. The month of
discovery is an integer in the range 61–191, corresponding to the
months February 2001 to December 2011. Note that the model
assumes a nest is killed immediately after discovery, so that ti may
alternatively be referred to as the date of death for nest i. The type
of discovery di is 0 for a nest reported by the public and 1 for a
nest found by targeted search.
It is known which regions were subject to targeted search in

each month. This is codified using an indicator function I1(x, y, t)
taking the value 1 if the position (x, y) was searched in month t,
and zero otherwise. It is also known which regions were treated
in each month. This is similarly codified using an indicator func-
tion I2(x, y, t) taking the value 1 if the position (x, y) was treated in
month t, and zero otherwise. It is possible for a region to be both
treated and searched in the same month.
The land type and habitat suitability at each location are also

known. The land type is encoded by a function S(x, y) and affects
the probability that a nest is discovered by passive detection at
position (x, y). The function S(x, y) returns the value 1, 2, 3, or 4,
representing Major Urban, Other Urban, Defined Boundary, and
Rural Balance, respectively. The habitat suitability is encoded by
a function H(x, y) and affects the probability that a nest will be-
come established at position (x, y). The function H(x, y) returns
the value 1, 2, 3, or 4 in order of decreasing suitability for ant
nests. Although in principle the functions S and H are functions
of time t, it is assumed in practice that the land type and habitat
suitability maps did not change during the period modeled.

Unknown Parameters of Nests. It is assumed that an unknown
number U of undetected nests existed at some time during the
period modeled. Each undetected nest had a position (xi, yi),
where i = N + 1, . . ., N + U.
Each nest i = 1, . . ., N + U (that is, including both detected and

undetected nests) is assumed to have some unknown founding
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time fi before (that is, strictly less than) its time of death. Founding
dates can be in the range 0–190, corresponding to the months
January 1996 through November 2011. Note that no detected nest
was allowed a founding time of 191, because the founding date is
required to be strictly less than the date of death. For conve-
nience, no undetected nests were allowed a founding date of 191
either, effectively ignoring any nests founded in the final month
of data collection. A founding time in the range 0–60 indicates
that a nest was founded before the first nest discoveries. A founding
date of −1 was also allowed, indicating that the nest was founded
some time before January 1996; such nests are termed “initial
nests.” The number of months modeled before the first detection
can easily be adjusted by the user, but in this study we allowed
for roughly 5 y (or, more precisely, 61 mo) of undetected ex-
pansion. Note that in principle an undetected nest can also be an
initial nest.
Undetected nests have an unknown time of death of ti. This

must correspond to a month in which the position (xi, yi) was
treated unless the nest was still alive at the end of 2011, which is
represented by setting ti = 9,999. Natural deaths are not consid-
ered, so nests are effectively immortal unless either detected or
killed by treatment. It is also convenient to define the type of
discovery di for an undetected nest to be 2, regardless of whether
it was destroyed by treatment or still living at the end of 2011.
The model also allows for nests that fail to “establish” after

founding. Such nests are included so that the probability of a
nest being founded at a particular location can depend on the
suitability of the habitat (discussed in more detail in the fol-
lowing section). Nests that do not establish can be thought of as
nests that died immediately after founding, without producing
any other nests. The value ei is defined for each nest to be 1 for
a nest that established and 0 for a nest that did not establish.
Detected nests automatically have ei =1, whereas undetected
nests may have ei = 0 or ei = 1, and thus ei is another unknown.
All noninitial nests, detected and undetected, are assumed to

have an unknown parent or founding nest pi. Noninitial nests also
have an unknown founding type Ji. It is possible to set the number
of founding types to two, in which case Ji = 0 represents a local
founding event and Ji = 1 represents a long-distance founding
event (a “jump”). However, in this study we used a larger number
of jump types to more accurately approximate the true distribution
of jump distances. It was found convenient to allow four different
jump types, corresponding to four different scales of founding
event. The number of founding types can be changed by the
user. More detail about the different jump types is given in the
following sections.

Global Unknown Parameters. In addition to the unknown param-
eters for each nest, there are some global unknown parameters.
These include the number U of undetected nests, already defined
above. Another global unknown is the vector γ = (γ1, γ2, γ3, γ4)
of probabilities of the four jump types. Note these probabilities
sum to 1.
For a noninitial nest i, the probability that its location is (xi, yi)

depends on the location (xp_i,yp_i) of its parent nest p_i. The
distribution of the distance j xp_i − xi j is discussed in Likelihood
Model below, but for now note that it depends on the jump type
Ji and has unknown SD σXJ_i. Similarly, the distance j yp_i − yi j
depends on Ji and has unknown SD σYJ_i.
The unknown probability that a specific nest will be killed if

treated we refer to as the treatment efficacy and denote by α0.
Similarly, the unknown probability that a specific nest will be
detected by targeted search we refer to as the targeted search
efficacy, denoted α1. The probability that the nest is detected by
the public is α2, α3, α4, or α5 for land types S(x, y) equal to 1, 2, 3,
and 4, respectively. It is natural to constrain 1 ≥ α2 ≥ α3 ≥ α4 ≥
α5 ≥ 0. In this study, we also constrained α0 ≥ 0.8 and α1 ≥ 0.8,
unless explicitly stated otherwise.

The unknown probability that a nest will become established at
a given location is β1, β2, β3, or β4 for habitat types H(x, y) equal
to 1, 2, 3, and 4, respectively. Because it is not possible to infer
the absolute values of the betas from the data provided, it is con-
venient to set β1 = 1, so that β2, β3, and β4 are relative establishment
probabilities. It is natural to constrain 1 ≥ β2 ≥ β3 ≥ β4 ≥ 0.
Finally, the average number of nests founded per nest per

month is an unknown parameter λ.

Likelihood Model. A conditional dependency graph showing all of
the known and unknown parameters pertaining to a noninitial
nest i is shown in Fig. 6 of the main text. The eight parameters
for nest i are displayed inside the box labeled “Nest i.” Six of the
seven global unknowns are shown in a row at the bottom of the
figure. (Note that the functions H, S, I1, and I2 are part of the data,
and hence known.) The seventh global parameter is U, the number
of unobserved nests at the end of the data collection period. At
the top of the figure, some of the parameters of the parent nest pi
are shown, and the arrows indicate the parameters of nest i that
depend on them.
Note that there are also a number of constraints on the allowed

values that imply additional conditional dependencies. Specifi-
cally, a nest may not found another nest before or in the month it
is itself founded, after or in the month it is discovered, or in any
month if it is not established.
For an initial nest (fi = −1), the much simpler conditional

dependency graph is shown in Fig. S8.
Based on these figures, the likelihood can be written in the

form

P
�
f ; p; J; x; y; e; t; djλ; γ; σX ; σY ; β; α;H; S′

�
= Pð f ; pjλ; tÞ

3PðJjγÞPðxjp; J; σX ÞPðyjp; J; σY Þ
3Pðej f ; x; y; β;HÞP�t; dj f ; x; y; α; S′�;

where S′ represents the triplet (S, I1, I2). Note that although this
expression appears to have f conditional on t and t conditional on
f, there is in reality no circular dependence, because the founding
time for nest i depends on the time of discovery of its parent pi,
whereas the time of discovery for nest i depends on that nest’s
own founding time.
Each nest is assumed to take 8 mo to mature, during which time

it is unable to found other nests. After maturation, the number of
nests founded per nest per month is assumed to follow a Poisson
distribution with parameter λ. The number of initial nests is
assumed to have been selected uniformly at random between
0 and some large maximum value Nmax. Hence the vector of
founding dates f = (f1, . . ., fN+U) and the vector of parent nests
P = (p1, . . ., pN+U) have a joint distribution given by

Pð f ; pjλ; tÞ= 1
Nmax + 1

∏
fi: fi≠−1g

∏
minfti=1;190g

j= fi + 8
Pois

�
nijð f ; pÞjλ

�
;

where nij(f, p) is the number of nests founded by nest i in month j.
This number can be obtained for each nest i by simply count-
ing the nests with parent nest i and founding date j. Note this
probability is instead set to 0 for impossible combinations of
values, specifically if any noninitial nest i has a parent nest pi that
died in the month fi or before, or was founded in the month ti
or after.
The vector of jump types J = (J1, . . ., JN+U) has probability

determined by the vector γ:

PðJjγÞ = ∏
j
γ
mj

j ;

wheremj is the number of nests founded by jump type j. For each
jump type j, the xi and yi coordinates are modeled independently
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and the distance of the nest from its founder along the x or y axis
is assumed to be exponentially distributed with mean (and SD)
σXj and σYj, respectively. Hence, for noninitial nests

P
�
xijxpi ; Ji = j; σX

�
=

1
2σXj

e−jxi−xpij=σXj ;

with a similar expression for yi. Note that the factor of one-half in
this expression allows for both positive and negative values of xi –
xpi. The probability of an initial nest i having x coordinate xi is
uniform over the range [438,000, 529,000] and similarly the prob-
ability of an initial nest i having y coordinate yi is uniform over the
range [6,920,000, 6,985,000]. This is a smaller range than is per-
mitted for noninitial nests, but it is highly likely that the invasion
was confined within this smaller range at the beginning of 1996.
Which nests are established is determined by the vector of

establishment probabilities β as follows:

Pðej β;H; f Þ= ∏
fi:fi≠−1g

βeiHðxi ;yiÞ
�
1− βHðxi;yiÞ

�1−ei
:

The probability of the search outcomes (discoveries and failures
to discover) is given by one of the following expressions, depending
on the value of di:

P
�
ti;di = 0j fi; xi; yi; α; S′

�
= α1+Sðxi;yiÞ ∏

ti−1

j=maxf61; fi + 6g

�
1− α1+Sðxi; yiÞ

�

3ð1− α1ÞI1ðxi;yi; jÞ ∏
ti−1

j=maxf61; fi + 1g
ð1− α0ÞI2ðxi; yi; jÞ

P
�
ti;di = 1j fi; xi; yi; α; S′

�
= α1

�
1− α1+Sðxi; yiÞ

�
∏
ti−1

j=maxf61; fi + 6g

3
�
1− α1+Sðxi; yiÞ

�ð1− α1ÞI1ðxi ; yi; jÞ ∏
ti−1

j=maxf61; fi + 1g
ð1− α0ÞI2ðxi ; yi ; jÞ

P
�
ti; di = 2j fi; xi; yi; α; S′

�
= α0 ∏

ti

j=maxf61; fi + 6g

�
1− α1+Sðxi; yiÞ

�

3ð1− α1ÞI1ðxi; yi; jÞ ∏
ti−1

j=maxf61; fi + 1g
ð1− α0ÞI2ðxi ; yi; jÞ

P
�
ti = 9999; di = 2j fi; xi; yi; α; S′

�
= ∏

ti

j=maxf61; fi + 6g

�
1− α1+Sðxi; yiÞ

�

3ð1− α1ÞI1ðxi ; yi ; jÞ ∏
ti

j=maxf61; fi + 1g
ð1− α0ÞI2ðxi; yi ; jÞ:

Note that nests are assumed to be undetectable until 6 mo after
founding, hence searches performed during that period do not
contribute to the likelihood. Treatments, however, are immedi-
ately effective. This probability is instead set to 0 for impossible
combinations of values, for example, if an undetected nest has
a time of death in a month that its position was not treated
(di = 2 but I2(xi, yi, ti) = 0).
Note that these expressions imply that each month from 61

to 190 consisted of four distinct phases—public searches, targeted
searches, treatments, and founding events—occurring in that or-
der, without overlap. Only founding events occurred in the months
0–60, and only searches and treatments occurred in month 191.
Note also that ti and di are not defined for nonestablished nests.
Finally, it is convenient for sampling purposes to construct

several lists of nests and include the probability of their specific

ordering as part of the likelihood. A list of all undetected nests is
maintained, and also separate lists of child nests founded by each
individual nest in each individual month after maturity. All per-
mutations within lists are considered equally likely, so the likeli-
hood of a permutation of L elements is (1/L!). However, a subtle
point is that the above model already assumes positions and other
distinguishing characteristics are assigned in a sequential manner
to child nests founded by the same nest in the same month, and
thus identifying a specific permutation of these lists contributes
no additional term to the likelihood. This is not the case for the
list of all undetected nests, which does therefore contribute an
additional factor of (1/Nu!) to the likelihood, where Nu is the
number of undetected nests.

Prior Probabilities. To implement a Bayesian model, prior prob-
abilities must be specified. These represent the state of knowledge
about the unknown parameters of the model, before examining
the data. Prior distributions are required for each of the global
parameters γ, σX, σY, α, β, and λ. In addition, for each initial nest
(fi = −1), prior probabilities are needed for the parameters xi and
yi. The prior for the jump probabilities γ was a uniform Dirichlet
prior, and the priors for the search parameters α and establish-
ment parameters β were uniform on the interval [0,1]. The priors
for the parameters σX and σY were taken to be inverse gamma
distributions with shape and scale parameters equal to 1. This is
equivalent to setting priors for σX

−1, σY
−1 to be gamma distri-

butions with shape and scale equal to 1. The prior for λ was also
taken to be a gamma distribution with shape and scale param-
eters λr and λs, respectively. The values of λr and λs were set to
large values to constrain λ to be close to the prior mean λr/λs,
which was adjusted to take values 0.15, 0.2, 0.25, or 0.3 (discussed
in main text). However, for some runs λ was unconstrained, and
for those cases we set λr = λs =1. After applying Bayes’ rule to
obtain the posterior distribution, as discussed below, we integrated
over λ. Because λ appears only in the prior and the Poisson dis-
tributions for each established nest and each month that nest is
able to found, the posterior contains the following factor after
integration:

Γðn+ λsÞðz+ λrÞn+λs ∏
N+U

i= 1
∏

minf190;ti−1g

k= fi + 8

1
nik!

;

where n is the number of noninitial nests, Γ represents the gamma
function, nik is the number of nests founded by nest i in month k,
and z is the total number of months in which nests can be founded,
summed over established nests. That is,

z=
XN+U

i= 1

ei½minf190; ti − 1g− ð fi + 8Þ+ 1�:

For the initial nests, the prior probabilities for the position coor-
dinates xi and yi were taken to be uniform over the ranges spec-
ified above.

MCMC Sampling. Once the prior and likelihood models are speci-
fied, Bayes’ rule can be invoked to obtain a posterior probability
distribution for the unknown parameters of the model. This pos-
terior distribution associates probabilities with all possible values
of the unknowns, including the number and locations of un-
discovered nests. Standard Bayesian procedure is then to use
MCMC to draw a sample from the posterior distribution and
use this sample to construct marginal distributions for each of
the parameters. Here we used an MCMC technique known as
the generalized Gibbs sampler (2). The sampler iteratively cycled
through the following updates. (i) For each nest, update the
phylogeny using subtree pruning and regrafting moves (similar to
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those described in ref. 3) using that nest as the root of the subtree
to be moved. (ii) For each nest, consider deleting or inserting
a new undetected child nest. (iii) Update all σ terms. (iv) Update
all α terms. (v) Update all β terms. (vi) Update all γ terms. (vii)
For each nest, consider swapping its position in the phylogeny
with that of its parent. (viii) Permute the order of the list of
undetected nests (which determines the order in which nests are
considered for updates i, ii, and vii). The first two updates are
described in detail in the main text; the rest are described below.
For each of the scenarios described in the main text, the sampler

was used to generate 20,000 samples, each of which consisted of
a complete set of values ascribed to all unknowns. Each of these
samples was drawn at random from a sampling block of 100,000
individual updates. Convergence was assessed graphically by plot-
ting the log-likelihood and the global parametersN, σ, α, β, γ, and λ
as time series. Convergence was judged to have occurred within the
first 10,000 samples in all cases; these were discarded as burn-in,
leaving 10,000 for estimating marginal posterior probabilities.

Move Types. In the main text, two move types that are not con-
ventional Gibbs updates are described: founder updates and
insertion/deletion moves. These move types are available for
all N + U nests. After these, the following conventional Gibbs
updates are performed.
Updating each σXj is straightforward, and involves drawing

a new value from the posterior conditional distribution for σXj,
which takes the form of an inverse gamma distribution:

σXjjx; J; p∼ Inv − Γ
�
1+ nj; 1+ zj

�
;

where 1 + nj is the shape parameter and 1 + zj the scale parameter.
The value of nj is the number of nests with founding type j. The
value of zj is

zj =
X

fi: Ji= jg
jxi − xpi j:

The conditional distribution for σYj is similarly defined.
Each αk is updated by drawing from the posterior conditional

distribution for αk (k = 0, 1, 2, 3, 4, 5) given by

p
�
αkje; t; d; f ; x; y; S′

�
∝ αmk+1

k ð1− αkÞnk+1:

The value mk for k = 2, 3, 4, 5 is the number of nests found by
public searches in land type k. Similarly, m1 is the number of
nests found by targeted search and m0 is the number of nests
killed by treatment. The value nk for k = 2, 3, 4, 5 is the total
number of failed public searches in land type k, whereas n1 is
the number of failed targeted searches and n0 is the number of
failed treatments. Sampling from these distributions could be
accomplished by drawing from a beta distribution if all values of
αk in the range [0,1] were allowed. However, we apply the con-
straints α2 ≥ α3 ≥ α4 ≥ α5. For some of the scenarios described in
the main text, α0 and α1 are allowed any value in [0,1], but for
other scenarios we constrain α0, α1 ≥ 0.8 or α0, α1 ≥ 0.85. These
constrained distributions for αk are sampled using the slice
sampler (4).
Each βk is updated by drawing from the posterior conditional

distribution for βk (k = 2, 3, 4) given by

pðβkje; f ; x; y;HÞ∝ βmk+1
k ð1− βkÞnk+1;  βk+1 ≤ βk ≤ βk−1;

where to simplify the expression of the inequality we define β1 = 1
and β5 = 0. The value mk is redefined in this expression as the
number of nests established in habitat type k. Similarly, the value
nk is redefined as the number of nests that failed to establish in

habitat type k. Recall that all nests founded in habitat type 1 are
automatically established. Again this conditional distribution for
βk is sampled using the slice sampler (4).
The founding type probabilities γ are updated by drawing from

their posterior conditional distribution, which takes the form of
a Dirichlet distribution:

γj J ∼Dirichletð1+ n1; 1+ n2; 1+ n3; 1+ n4Þ;

where nj is again redefined as the number of nests with founding
type j.
Another move type that was implemented for all N + U nests is

a parent/child swap. This is a conventional Metropolis–Hastings-
style update. The sampler scans through the ordered list of nests
and for each nest i it considers swapping the children of nest i with
the children of its parent pi. The founding dates and founding
types of nests i and pi are also swapped, i becomes the parent of pi,
and the parent of pi, if there is one, becomes the parent of i. For
initial nests, no change is made and the swap is automatically
considered a failure. Automatic failures also occur if nest i is not
established, or if the swap would violate any natural constraints
such as that a nest can found other nests only during its mature
lifetime. Rejected swaps are also considered failures. After each
failure, the next nest on the list after i is considered for swapping.
However, after a successful swap, the next nest on the list after
pi is considered for swapping. This continues until a failed swap
occurs for the last nest on the list.
The probability of accepting a swap depends on the ratio of

e−
�
jxi−xgi j=σXJpi+jyi−ygi j=σYJpi

�
∏

fm:pm=ig
e−
�
jxm−xpi j=σXJm+jym−ypi j=σYJm

�

3 ∏
fm:pm=pi ; pm≠ ig

e−
�
jxm−xij=σXJm+jym−yij=σYJm

�
∏

minf191;ti;fi+5g

j=maxf61;fpi + 6g
�
1−α1+Sðxi;yiÞ

�

3ð1− α1ÞI1ðxi;yi;jÞ ∏
minf191;ti−1; fig

j=maxf61;fpi + 1g
ð1− α0ÞI2ðxi ;yi ;jÞðznew + λrÞ−ðn+λsÞ

to

e−
�
jxpi−xgi j=σXJpi+j ypi−ygi j=σYJpi

�
∏

fm:pm=ig
e−
�
jxm−xij=σXJm+jym−yij=σYJm

�

3 ∏
fm:pm=pi;pm≠ ig

e−ðjxm−xpij=σXJm+jym−ypij=σYJmÞ ∏
minf191;tpi;fi+5g

j=maxf61;fpi + 6g
�
1−α1+Sðxpi;ypiÞ

�

3ð1− α1ÞI1ðxpi;ypi; jÞ ∏
minf191;tpi−1; fig

j=maxf61; fpi + 1g
ð1− α0ÞI2ðxpi;ypi;jÞðzold + λrÞ−ðn+λsÞ

Here gi represents the grandparent of nest i, that is, the parent of
pi. However, if nest pi is an initial nest and has no parent, then
the first factor (the only factor containing gi) in the above ex-
pressions is removed. The terms zold and znew represent the num-
ber of months after maturation summed over all nests, before
and after the swap, respectively. Note that the number of months
after maturation only changes for nests i and pi.
At the end of each cycle through move types, the ordered list of

undetected nests is permuted, with all permutations being equally
likely. In other words, the conditional distribution over the space
of permutations is uniform.

Run Times
The computational effort required to produce these results com-
prised the following analyses, performed in parallel on separate
central processing units:
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i) Two analyses of the simulated dataset, with and without the
additional constraints on search and treatment efficacies and
reproductive rate,

ii) Four analyses of the complete dataset collected
2001–2011 using the additional constraints with dif-
ferent values of λ, plus a fifth without the additional
constraints,

iii) Five independent analyses of the 2001–2008 dataset with
different random starts, plus a sixth with increased lower
bounds on search and treatment efficacies.

Exact run times were not recorded, but each analysis required
∼2–3 wk of continuous central processing unit time. However,
the code has not been optimized, and significant improvements
in efficiency may still be possible.

1. Cook SR, Gelman A, Rubin DB (2006) Validation of software for Bayesian models using
posterior quantiles. J Comput Graph Statist 6(3):675–692.

2. Keith JM, Kroese DP, Bryant D (2004) A generalized Markov sampler. Methodol
Comput Appl Probab 6(1):29–53.

3. Keith JM, Adams P, Ragan MA, Bryant D (2005) Sampling phylogenetic tree space with
the generalized Gibbs sampler. Mol Phylogenet Evol 34(3):459–468.

4. Neal RM (2003) Slice sampling. Ann Stat 31(3):705–767.

Fig. S1. Evaluations of statistic zθ for the total number of nests N; the 5%, 15%, . . ., 95% percentiles of the distribution of founding distances in the x direction
(QX) and y direction (Qy); reproductive rate λ; treatment and search efficacies α0 to α5; and relative establishment probabilities β2 to β4. All statistics are based on
100 simulated datasets.
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Fig. S2. (A) The true distribution of founding distances for the simulated dataset (gray) and posterior median inferred distributions of founding distances in
the x and y directions (solid black lines, almost indistinguishable) with 95% credible intervals for the x direction (dashed black). (B) The number of immature
nests existing in each month of a simulated invasion (light gray, solid line) and the posterior median number of immature nests estimated with additional
constraints that α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.25 (black, solid line) with 95% credible intervals (black, dashed lines). The posterior
median number of immature nests estimated without these constraints is indistinguishable from the estimate made using them. (C) Posterior marginal
densities of the relative establishment probabilities β4, β3, and β2, in that order from left to right, inferred from simulated data. The true values used in
simulation were 0.3, 0.6, and 0.9, respectively. (D) Posterior marginal densities of the probabilities of passive detection per month α5, α4, α3, and α2, in that order
from left to right, inferred from simulated data. The leftmost density is for rural areas, and the rightmost for urban. The true values used in simulation were
0.01, 0.013, 0.016, and 0.02, respectively.
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Legend continued on following page

Fig. S3. (A) The posterior median northernmost and southernmost y coordinates of all mature nests (black lines) and immature nests (gray lines) in each month
from January 1996 to December 2011 estimated using additional constraints that α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.25. Corresponding
inferences with different values of λ or without these constraints are almost identical. (B) The corresponding trajectories of the westernmost and easternmost
x coordinates. (C) The estimated number of immature nests existing in each month from January 1996 to December 2011, using additional constraints that α0 and
α1 are both greater than or equal to 0.8 and λ ≈ 0.15, 0.2, 0.25, and 0.3 (four black lines, bottom to top, respectively) and corresponding estimates without the
additional constraints (gray line). (D) Posterior median inferred distributions of founding distances in the x (lower solid line) and y (upper solid line) directions with
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95% credible intervals (dashed lines), using additional constraints that α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.25. Corresponding inferences with
different values of λ or without such constraints are almost identical. (E) Posterior marginal densities of relative establishment probabilities β4 using additional
constraints that α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.15, 0.2, 0.25, and 0.3 (four gray lines, right to left, respectively) and corresponding
densities for β3 (four black lines, right to left, respectively). (F) Posterior marginal densities of the probabilities of passive detection per month α5, α4, α3, and α2, in
that order from left to right, using additional constraints that α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.3 (four black lines). The leftmost density is
for rural areas, and the rightmost for urban. Also shown are the corresponding marginal densities without the additional constraints (four gray lines).

Fig. S4. (A) The posterior median northernmost and southernmost y coordinates of all mature nests (black lines) in each month from January 1996 to
December 2011 estimated using additional constraints that α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.25 and corresponding estimates for
January 1996 to December 2008 using only the data available in December 2008 (gray, solid lines) with 95% credible intervals (gray, dashed lines). (B) The
corresponding trajectories of the westernmost and easternmost x coordinates. (C) The posterior median number of mature nests existing in each month from
January 1996 to December 2011, estimated using additional constraints that α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.25 (black, solid line) with
95% credible intervals (black, dashed lines) and corresponding estimates using only the data available in December 2008 (gray lines, solid for median, dashed
for 95% credible intervals).
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Fig. S5. Heat maps for the posterior expected number of nests in grid cells 500 m by 500 m in 2008 based on all of the data collected 2001–2011 (A) and on
only the data from 2001 to 2008 (B). Brighter cells (yellows) have lower expected numbers of nests and darker cells (reds) have higher expected numbers. Color
classes are on a logarithmic scale.
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Fig. S6. (A) The posterior median northernmost and southernmost y coordinates of all mature nests in each month from January 1996 to December 2008
estimated using additional constraints that α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.25, for five different random starts (five black lines) and
corresponding estimates using an alternative constraint that α0 and α1 are both greater than or equal to 0.85 (gray line). (B) The corresponding trajectories of
the westernmost and easternmost x coordinates. (C) The posterior median number of mature nests existing in each month from January 1996 to December
2008, estimated using additional constraints that α0 and α1 are both greater than or equal to 0.8 and λ ≈ 0.25, for five different random starts (five black lines)
and corresponding estimates using an alternative constraint that α0 and α1 are both greater than or equal to 0.85 (gray line).
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Fig. S7. Searched (black) and treated (white) areas 2001–2011. Areas that were both searched and treated are gray.

Fig. S8. Model parameters associated with initial nests.
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