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S| Materials and Methods

HLA Targeting Efficiency. The HLA targeting efficiency score
quantifies the relationship between HLA binding and conserva-
tion of target peptides. More formally, the HLA targeting effi-
ciency score is the Spearman correlation coefficient between
binding scores and conservation scores for amino acids along
a given protein. In principle, linear correlation factors may be used
because both scores reflect log probabilities (binding energies vs.
evolutionary rates). Negative scores denote a preference for
binding to variable regions, and positive scores indicate a prefer-
ence to bind to conserved regions. The process of computing the
HLA targeting efficiency score is illustrated in Fig. 1.

HLA Frequency Data. HLA frequency data were obtained from the
www.allelefrequencies.net Web site (1) using all the reported
studies that had four-digit resolution HLA typing from around
the world. Average HLA frequencies were computed using
a weighted average of all reported studies for each country,
based on each study sample size.

pH1N1 Mortality Rates. Pandemic HIN1 (pH1N1) death counts
were obtained from the European Centre for Disease Pre-
vention and Control (2), and were based on official reports
from ministries of health in each country. Population sizes by
country were obtained from the Central Intelligence Agency
World Factbook (https://www.cia.gov/library/publications/the-
world-factbook/rankorder/2119rank.html).

Sequence Similarity Measures. We defined a similarity measure-
ment over pairs of viruses that is based on the efficiency profiles of
the set of 95 HLA alleles analyzed in this study. The similarity
measure is defined by the Spearman correlation coefficient be-
tween HLA targeting efficiency profiles. We compare this simi-
larity measure to an alignment method based on the standard
Needleman—Wunsch (NW) global alignment algorithm (3). The
alignment score of two sequences is defined by

S(Sl, 52) = [1 _SNW(SI» 32)]/SNW(517 S2)

*Syw [l = (s1, 82)] /Snw (52, 52),
where Sy (s1, 52) is the NW score of sequences s; and s,.

HLA Allele Determination. Participant HLA alleles were de-
termined using sample DNA quantitated and amplified with
locus-specific primers followed by hybridization to Luminex flow
beads (One Lambda) with bound oligonucleotides. Detection of
the bound product was performed with a second fluorescent
marker to identify the bound product and the specific oligonu-
cleotide. Results were analyzed with Fusion 2.0 software. DNA
sequencing (Abbott Molecular) was used as needed to clarify
specific high-resolution HLA results and analyzed with Connexio
software. For participants too young for conventional HLA allele
determination by venipuncture, a sequence-based typing strategy
was used on nasal swabs to determine exon 2 and exon 3
sequences for HLA class I analysis.

Viruses. A/California/04/2009 (HIN1), A/Brisbane/59/2007 (HIN1),
and A/Brisbane/10/2007 (H3N2) were kindly provided by Richard J.
Webby (St. Jude Children’s Research Hospital).

Binding Scores. Binding scores were computed using the adaptive
double-threading (ADT) prediction algorithm (4), which esti-
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mates the binding affinity of a peptide-HLA complex and pro-
vides state-of-the-art predictions of HLA-peptide binding affinities
(5). More formally, given a 9-mer peptide p = (p1, p2, ", p9) and
an HLA allele A, the algorithm estimates the binding energy
Ey(p)=Eu(p1, p2,**", po). The model is fit to the logarithm ICs
measurements for different allele—peptide combinations. The
probability of peptide presentation therefore is proportional
to e~£4(?) where low energy corresponds to high presentation
probability, and vice versa. The log probability of presentation
of a single site in a protein is computed by considering the
presentation probabilities of all peptides straddling that site.
As an estimate that is robust to prediction errors, we define
the binding score By, (i) for the i-th amino acid in the sequence
S = (s, 52, .., S9) to be

i
By(i)= - Z E (57,741, ", Sj48)
=t

for 9<i<N-0.

Conservation Scores. Conservation scores were computed using the
ConSeq server (6, 7), which estimates the evolutionary rate for
each position along a protein. We used the National Center for
Biotechnology Information influenza database (8) to create cu-
rated alignments for each influenza protein (Table S1). Because
of the large number of influenza sequences in the database, the
conservation scores have narrow confidence intervals.

HLA Predictor Accuracy. The HLA predictions used in this study
were provided by the ADT algorithm, which was benchmarked
recently and found to be comparable with the state-of-the-art
predictors (5). The ADT model used here was trained on
~40,000 HLA-peptide binding measurements, obtained from
the Immune Epitope Database (9). This dataset contained
binding measurements for only 35 of the 95 alleles analyzed
here. The ADT model, as well as other prediction models (10),
can provide predictions for novel HLA—peptide combinations by
pooling information from other related alleles from which
binding data were provided. Clearly, the ability to provide pre-
dictions for novel HLA alleles is a major advance, but it also is
expected that the performance of HLA predictors is correlated
tightly with the amount of training data available for each HLA
(5). Our training data included 633 HLA—peptide measurements
for A*24 alleles and 2,196 HLA-peptide measurements for
A*6801, but did not contain any data on B*39 or A*32 alleles.
We therefore expect our predictions for A*32 and B*39 to be
noisier than those for A*24 alleles and A*6801.

T-Cell Enrichment. Peripheral blood mononuclear cells (PBMCs)
were obtained by venipuncture and subsequent isolation by
standard Ficoll-Hypaque density gradient centrifugation within
24 h of blood draw. Cells were cryopreserved and stored in liquid
nitrogen. Where indicated, PBMCs were enriched for CD4" or
CD8* T-cell populations. CD4* T cells were selected magneti-
cally using CD4 microbeads (Miltenyi Biotec) following manu-
facturer instructions using MS columns, followed by selection of
CD8" T cells using CD8 microbeads (Miltenyi Biotec). Cells
obtained within the second flow-through were used immediately
as antigen-presenting cells in subsequent enzyme-linked immu-
nosorbent spot (ELISpot) assays.
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IFN-y ELISpot Assay. MultiScreen-IP 96-well plates (Millipore)
were precoated with anti-human IFN-y monoclonal antibody
(clone 1-D1K; Mabtech) overnight at 4 °C. For whole PBMC
fractions, cells were incubated with B-propiolactone-inactivated A/
California/04/09 (HIN1), A/Brisbane/59/2007 (HIN1), A/Bris-
bane/10/2007 (H3N2), media alone, or Con A for 4 h at 37 °C.
Stimulated cells were washed and plated at 1 x 10° cells per well in
duplicate or triplicate per condition. Responder PBMCs were
added at 1 x 10° cells per well and after a 48-h incubation were
incubated with biotinylated anti-human IFN-y mAb (clone 7-B6-1;
Mabtech). IFN-y spot counts were enumerated using a Zeiss Ax-
ioplan 2 microscope and KS ELISPOT software.
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Statistical Analysis. Correlation coefficients reported were com-
puted using Pearson correlations. Analysis was performed using
Matlab software. A mixed effects model was used to test for
differences between the HLA-A and HLA-B alleles to pHIN1,
adjusting for HLA supertypes and two-digit families. This study
was conducted in compliance with 45 CFR 46 and the Declaration
of Helsinki. Institutional review boards of St. Jude Children’s
Research Hospital and the University of Tennessee Health Sci-
ence Center / Le Bonheur Children’s Hospital approved the
study. Written, informed consent was obtained from participants
or their parents/guardians as well as assent from age-appropriate
subjects at the time of enrollment.
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Fig. S1.

Comparing the HLA targeting efficiency scores of pH1N1 to a seasonal 2007 H1N1 strain. HLA targeting efficiency scores for A/California/UR06-0321/

2007(H1N1) (y-axis) plotted against scores for the pH1N1 2009 strain (x-axis). A*24 alleles are marked by red 7.
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Fig. S2. HLA allele frequency and mortality from pH1N1. pH1N1 mortality rates (y-axis) plotted against HLA frequencies of two-digit HLA alleles that were
found to correlate with pH1N1 mortality. Dot sizes represent the population size of each study. A weighted average of these studies was used to compute HLA
frequencies in each county. (A) pH1N1 mortality (y-axis) vs. HLA-A*24 frequencies (x-axis) for 34 countries. (B) pH1N1-associated mortality rates (y-axis) plotted
against HLA-A*68 frequencies (x-axis). (C) pH1N1-associated mortality rates (y-axis) plotted against HLA-B*39 frequencies (x-axis). (D) pH1N1-associated
mortality rates (y-axis) plotted against HLA-A*32 frequencies (x-axis).
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Fig. S3. HLA targeting protein efficiency scores. HLA targeting efficiency scores for the 95 HLA class | alleles analyzed here for neuraminidase (NA) (A) and HA
(B) of various influenza A strains. HLA alleles were ordered by supertypes.
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Fig. S4. Targeting efficiencies for pH1N1 for all 95 analyzed HLA alleles. Each @ marks the efficiency score of a single HLA allele. Alleles are sorted by loci. Blue
bars represent average loci efficiencies. HLA-A*24 alleles are marked by m. The efficiency scores of HLA-B alleles are significantly higher than those of HLA-A
alleles (P < 0.005).

Table S1. Influenza strains analyzed in this study

Strain name

A/California/06/2009(H1N1)

A/New York/18/2009(H1N1)
A/Kentucky/UR07-0061/2008(H1N1)
A/California/lUR06-0321/2007(H1N1)
A/Brevig_Mission/1/1918(H1N1)
A/California/lUR07-0019/2008(H3N2)
A/New York/392/2004(H3N2)
A/Goose/Guangdong/1/96(H5N1)
A/Hong Kong/156/97(H5N1)

All strains selected were fully sequenced.
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Table S2. List of all populations worldwide that carry either

the A*6801 or B*39 allele with a phenotypic frequency greater

than 5%

Population Allele Frequency, %
Brazil Terena A*6801 25.0
Argentina Rosario Toba A*6801 22.1
Mexico Sonora Seri A*6801 19.7
USA Alaska Yupik Natives A*6801 15.5
Mexico Mixtec Oaxaca A*6801 13.7
India Khandesh Pawra A*6801 12.0
Mexico Zaptotec Oaxaca A*6801 11.2
Burkina Faso Mossi A*6801 9.4
Mexico Chihuahua State Tarahumara A*6801 9.1
Ecuador Cayapa A*6801 9.0
South Africa Natal Tamil A*6801 8.0
Pakistan Sindhi A*6801 7.7
India Mumbai Marathas A*6801 7.5
Pakistan Kalash A*6801 7.5
India Tamil Nadu Nadar A*6801 7.4
Senegal Niokholo Mandenka A*6801 7.0
Georgia Tibilisi Kurds A*6801 6.7
Georgia Svaneti Svans A*6801 6.3
Mexico Mestizos A*6801 6.1
India West Bhils A*6801 6.0
Portugal Centre A*6801 6.0
Belgium A*6801 5.7
Mexico Mixe Oaxaca A*6801 5.6
Saudi Arabia Guraiat and Hall A*6801 5.6
USA North American Native A*6801 5.6
USA South Texas Hispanics A*6801 5.2
Taiwan Saisiat B*3901 54.9
Taiwan Tsou B*3901 24.5
South Dakota Lakota Sioux B*3901 22.5
Taiwan Taroko B*3901 21.8
Taiwan Atayal B*3901 19.8
PNG Wanigela B*3901 16.7
Japan Ainu Hokkaido B*3901 16.0
Taiwan Bunun B*3901 14.9
New Mexico Canoncito Navajo B*3901 14.6
Taiwan Thao B*3901 133
Taiwan Rukai B*3901 13.0
Taiwan Ami B*3901 10.2
USA Hawaii Okinawa B*3901 7.7
Papua New Guinea Wosera B*3901 7.0
Papua New Guinea Madang B*3901 6.4
Mexico Mixtec Oaxaca B*3901 5.9
Mexico Mixe Oaxaca B*3902 38.7
Mexico Zaptotec Oaxaca B*3902 134
Mexico Mixtec Oaxaca B*3902 5.9
PNG New Britain Rabaul B*3903 13.2
Brazil Terena B*3903 11.2
Argentina Toba Rosario B*3903 5.2
Venezuela Perija Yucpa B*3905 36.1
Mexico Zaptotec Oaxaca B*3905 12.7
Mexico Mixtec Oaxaca B*3905 9.8
Venezuela Perja Mountain Bari B*3906 23.9
Mexico Mixtec Oaxaca B*3906 8.8
USA Arizona Pima B*3906 7.3
USA South Texas Hispanics B*3906 5.6
Venezuela Perija Yucpa B*3909 34.9
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