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Methods and Models
First, we briefly describe the dissipative particle dynamics (DPD)
method. Second, we present details of the two-component red
blood cell (RBC) model, including the elasticity of both the lipid
bilayer and the cytoskeleton, the bilayer–cytoskeletal interactions,
and membrane viscosities. Third, we derive the scaling relation-
ships between model units and physical units.

Dissipative Particle Dynamics. The DPD method is a particle-based
mesoscopic simulation technique that allows modeling of fluids
and softmatter.ADPDsystem is represented byNparticles, which
interact through pairwise effective potentials and move according
to Newton’s second law (1, 2). In a DPD simulation, a particle
represents the center of mass in a cluster of atoms, and the po-
sition and momentum of the particle are updated in a continuous
phase but spaced at discrete time steps. Particles i and j at posi-
tions ri and rj interact with each other via pairwise conservative,
dissipative, and random forces, which are given by
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where rij = ri − rj, rij = jrijj, nij = rij=rij, and vij = vi − vj. The coeffi-
cients aij, γ, and σ define, respectively, the strength of conserva-
tive, dissipative, and random forces. In addition, ζij is a random
number with zero mean and unit variance, and Δt is the time-
step size. The weight function ωðrijÞ is given by
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where rc is the cutoff radius, which gives the extent of the in-
teraction range. In the DPD method, the dissipative force and
the random force act as heat sink and source, respectively, and
the combined effect of the two forces acts a thermostat. Also,
a common choice of the soft repulsion for the conservative force
permits us to use larger integration time steps than are usually
allowed by the molecular dynamics (MD) simulation technique;
thus, DPD is a simple but efficient simulation method that cor-
rectly represents hydrodynamic interactions.

Membrane Elasticity of the Two-Component RBC Model. In this
unique two-component RBC model, the membrane is modeled by
two different components, i.e., the lipid bilayer and the cytoskel-
eton, as shown in Fig. S1A. Specifically, each component is con-
structed by a 2D triangulated network withNv vertices, where each
vertex is represented by a DPD particle. Different from the one-
component DPDmodel, the lipid bilayer has no shear stiffness but
only bending stiffness and a very large local area stiffness, whereas
the inner layer (cytoskeleton) has no bending stiffness but a large
shear stiffness. The potential of the RBC membrane including
these two different components is written as

U =Us +Ub +Ua+v +Uint; [S5]

where Us is the spring’s potential energy from the cytoskeleton,
given by
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whereNs is the number of springs, lj is the length of the spring j, lm
is the contour length, xj = lj=lm, p is the persistence length, kB is
the Boltzmann constant, T is the temperature, kp is the spring
constant, and n is a parameter. The first term is a worm-like chain
(WLC) model (3) and the second term is a repulsive force term.
Note that in the finite-element simulation (4), instead of using this
exponential form of repulsive force, a simple functional formC=A
is used, where C is a constant and A is the area of the correspond-
ing triangle in the spectrin network. To be consistent in the com-
parison with the finite-element method (FEM) simulation result,
we also used the same function form C=A in the prestressed DPD
simulation case of micropipette aspiration. The isotropic mean
stress for an equilateral triangle in the network is given as

T = −
3lfWLCðlÞ

4A
−

C
A2; [S7]

where l is the length of the spectrin link, fWLCðlÞ is the force
of the WLC model, and A=

ffiffiffi
3

p
l2=4.

In our simulations, we have T = 0 for the lipid bilayer. For the
cytoskeleton, we also have T = 0 in the case of stress-free initial
configuration, but in the case of prestressed initial configuration,
T can be nonzero; e.g., T = − 30 pN/μm.
Also, Ub is the bending energy from the lipid bilayer, given by
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where kb is the bending coefficient and kb = 2kc=
ffiffiffi
3

p
, where kc is

the bending stiffness of the bilayer. Also, θj is the instantaneous
angle between two adjacent triangles as shown in Fig. S1B, and θ0
is the spontaneous angle, which is set to zero in our simulations.
Finally, Ua+v corresponds to the area and volume conservation
constraints from the lipid bilayer, given by
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where Nt is the number of triangles in the lipid bilayer, Aj is the
instantaneous triangle area as shown in Fig. S1B, and A0 is the
initial triangle area. V tot is the current total RBC volume, and
V tot
0 is the initial total RBC volume. Also, kl and kv are the bi-

layer local area constraint coefficient and the global volume
constraint coefficient, respectively.

Bilayer–Cytoskeletal Interactions. In addition to the commonly used
elastic potentials for the membrane, we invoke another term Uint

to capture the interaction between the lipid bilayer and the cy-
toskeleton, which can be expressed as a summation of harmonic
potentials given by
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X
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Here Nbs is the number of bond connections between the bilayer
and the cytoskeleton, i.e., the interactions between the transmem-
brane proteins (band 3 and glycophorin C) and spectrins, which is
set to be the same as the number of vertices Nv in the current
model; kbs denotes the spring constant of the bond. Although there
are two kinds of interactions in each junctional complex, including
the major connections via band 3 and ankyrin and the secondary
connections via actin, glycophorin C, and band 4.1, here we con-
sider them together as an effective bilayer–cytoskeletal interaction
in one junctional complex and model this interaction as a normal
viscoelastic spring along with a tangential friction force as shown in
Fig. S1 C and D. As shown in Fig. S1C, dj is the distance between
the vertex j of the cytoskeleton and the corresponding projection
point j′ on the lipid bilayer; and dj0 is the initial distance between
the vertex j and the point j′, which is set to zero in our simulations.
Experiments show that dj0 ≈ 30 nm (5), but we found that the
difference is negligible in our simulations. Also, nj is the normal
direction of the lipid-bilayer surface at the projection point of
vertex j. Numerically, a master–slave penalty contact algorithm is
applied to calculate the force (6). The vertex in the spectrin cyto-
skeletal network is projected onto the closest triangle face of the
lipid bilayer, and the distance and relative velocity between the
cytoskeleton vertex and its projection point on the lipid bilayer are
obtained as shown in Fig. S1C.
The corresponding elastic force on the vertex j of the cyto-

skeleton is given as
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and the vertical damping force related to this elastic spring is
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�
vj ·nj

�
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where cbs is the vertical damping coefficient, and vj is the relative
velocity between the vertex j and the corresponding projection
point j′ on the lipid bilayer. The tangential friction force between
the lipid bilayer and the cytoskeleton is given as

fFj = − fbs
�
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vj ·nj
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nj
	
; [S13]

where fbs is the tangential friction coefficient.
To ensure that the temperature is constant, another random

force term is added, as in ref. 7,
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where tr½dWij� is the trace of a random matrix of independent
Wiener increments of dWij. The Wiener increment dWijðtÞ=
Wijðt+ΔtÞ−WijðtÞ over a time-stepΔt is a random variable drawn
from a normal distribution with zero mean and a time-step vari-
ance N½0;Δt�. dWA

ij = ðdWij − dWjiÞ=2 is the antisymmetric part,
and Δt is the magnitude of the time step.
Hence, the total interaction force is given by

f intj = fEj + fDj + fFj + fRj : [S15]

In addition, f intj is also distributed to the three vertices of the
corresponding bilayer triangle with one-third of the magnitude
and an opposite sign to follow Newton’s third law. For simplicity,
the vertical damping coefficient is always set to be the same as
the friction coefficient; i.e., cbs = fbs.

Membrane Viscosities.Themembrane viscosity is incorporated into
both the lipid bilayer and the cytoskeletonby adding two terms, i.e.,
dissipative and random forces, respectively, as
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where γTk and γCk are dissipative parameters ð3γCk > γTk Þ; and eij
and vij are the relative position and velocity vectors of spring
ends i and j. Also, dWS

ij = dWS
ij − tr½dWS

ij�1=3 is the traceless sym-
metric part of the random matrix of independent Wiener incre-
ments of dWij, and k= b; s stands for the lipid bilayer or the
cytoskeleton, respectively. The viscosities of the lipid bilayer
and the cytoskeleton can be calculated as
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4

: [S18]

Experiments show that the cytoskeleton viscosity ηs is about 50–
100 times larger than the lipid-bilayer viscosity ηb (8).

Scaling of DPDModel and Physical Units.Within the DPD approach,
reduced units are used for the mass, length, and energy. In the
following, we derive the scaling relationships between model units
and physical units.
Let r= 1 m denote the length scale in the physical system in SI

units and r′ denote the length scale of the DPD model. The same
initial diameter (D0 = 7:82 μm) of the RBC can be expressed in
both the DPD system and the physical system as

D0 =DM
0 · r′=DP

0 · r= 7:82× 10−6 m; [S19]

where DP
0 = 7:82× 10−6 and m is meter. The variables with upper

index “P” (e.g., DP
0 ) are values (numbers without units) of the

quantities (e.g., D0) in the physical system with SI units, whereas
the variables with upper index “M” (e.g.,DM

0 ) are values (numbers
without units) of the quantities (e.g., D0) in the DPD system. We
can choose the length-scale r′ of the DPD system, and usually
specific values of r′ andDM

0 depend on the size of the DPD system.
Because 
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where ½·� denotes the dimension of a quantity, μs is the shear
modulus, kB is the Boltzmann constant, and T is the tempera-
ture, we should have
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Plugging Eq. S19 into Eq. S21, we get
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Similarly for the force N, because
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For time scaling, because
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where η is a characteristic viscosity, we have
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where τ= 1 s is the timescale in the physical system with SI units,
and τ′ is the timescale in the DPD system. Plugging Eq. S24 into
Eq. S26, we get the timescale of the DPD system as

τ′ =
DP

0

DM
0

ηP

ηM
μMs
μPs

s; [S27]

where s denotes second.
For example, in the simulations of tank-treading motions, the

RBC diameter, the membrane Young’s modulus, and the interior
fluid viscosity are DM

0 = 7:82, μMs = 12:125, and ηM = 1:8, re-
spectively, corresponding to DP

0 = 7:82× 10−6, μPs = 4:725× 10−6,
and ηP = 0:006 in the physical system with SI units. Hence, the
DPD timescale is τ′ ’ 2:7 ms. In the simulations of tank-treading
motions, a time-step size ΔtM = ð0:0005∼ 0:005Þ in DPD units is
used, which gives Δt=ΔtMτ′= ð1:35∼ 13:5Þ μs.
Comparison with Existing Models. Two-component whole-cell
erythrocyte membrane models have been developed before (4, 9,
10). Compared with the existing models, the current two-compo-
nent DPD model has three major advantages. The first advantage
is that we explicitly model the bilayer–cytoskeletal interaction in-
cluding the normal interaction and tangential friction based on
realistic protein connectivity, in such a way that the bilayer–
cytoskeletal interaction force and cytoskeleton deformation at
the molecular level can be investigated directly. Second, we use a
systematic coarse-graining procedure starting from the spectrin
level (11, 12) so that different coarse-graining levels can be used to
produce adequate levels of desired accuracy. Third, the model
proposed here can predict the physical phenomena of quasi-static
deformation, fluid dynamics, and thermal fluctuations, whereas
some of the prior two-component whole-cell models (4, 10)
cannot simulate thermal fluctuations. In addition, in contrast
to the existing particle-based two-component model (9), our
thermal fluctuation simulations have been validated exten-
sively by comparing the results with experimental data (13).
In addition to two-component whole-cell models, there are also

sophisticated two-componentmodels of localmembranes, inwhich
only a small piece of RBC membrane is simulated, such as the
model by Li and Lykotrafitis (14). Their model is more detailed
with molecular information on lipid diffusion. Consequently, the
computational cost is prohibitively high for it to be applicable to
study whole-cell problems at the present time. However, the
computational framework we present here can be further ex-
tended in future work to include these extra details as studied in
ref. 14. As the first step, and for computational expediency, we
neglect these details here and focus on the problems of the whole
cell, such as in rheology, where details like lipid diffusion are not
important. Hence, our two-component model is a good compro-
mise between the one-component whole-cell DPD model and the
two-component detailed molecular dynamics model in ref. 14. It
can be used to explore important problems involving cell physi-
ology and pathological states mediated by protein mutations,
such as the bilayer loss in hereditary spherocytosis and the bilayer–
cytoskeleton uncoupling in sickle-cell anemia (15).

Simulation Setups and Parameter Estimation
Here, we present details of the simulation setups of micropipette
aspiration, membrane fluctuations, tank-treading motion, and
channel flow stretching. Subsequently, we estimate the default
main parameters.

Micropipette Aspiration Simulation Setup. In the micropipette as-
piration (16), a negative pressure is applied to aspirate a RBC into
a small glass pipette. The RBC membrane undergoes large defor-
mation during this aspiration process. To measure the area de-
formation of the cytoskeleton alone, the actins in the RBC mem-
brane are labeled using rhodamine–phalloidin, an antibody with
fluorescence. By measuring the fluorescence light intensity, the
actin density in different regions of the cytoskeleton can be de-
termined, which is inversely proportional to the area deformation
of the cytoskeleton. It was found that the cytoskeleton in the cap
region of the aspirated cell inside the pipette is significantly ex-
panded, whereas the cytoskeleton near the pipette entrance is
compressed. The density of the lipid molecule marked by another
antibody was found uniform over the cell surface because the lipid
bilayer is incompressible. This experiment takes up to 30 min to
allow the bilayer–cytoskeletal slip to reach steady state, so that it is
modeled as a quasi-static process in our simulation; i.e., the bi-
layer–cytoskeletal friction and membrane viscosities are neglected.
The parameters used in this simulation are listed in Table S1.
The RBCs are hypotonically swollen (osmotic pressure is in a

typical range of 160–250 mOsm) in the beginning of this experi-
ment (16) and correspondingly our RBC model is also inflated
from a standard biconcave shape accordingly in the beginning of
the simulation. A rigid cylindrical surface is used to represent the
pipette. The interaction between the lipid bilayer and the pipette is
modeled as a hard contact by using a master–slave algorithm (6)
similar to the bilayer–cytoskeletal interaction but with a large
spring constant. As indicated in the experiments, during the as-
piration the membrane is usually separated from the pipette by a
small gap of fluid so that the friction between them is insignificant
and thus not considered in our model. We further simplify the
fluid pressure distribution inside the pipette as a uniform pressure
difference applied on the cap region of the lipid bilayer and a
linear distribution along the aspiration length; the pressure dif-
ference equals zero at the entrance.
In addition to the results shown in Fig. 1 in the main text, we also

applied the one-component DPDmodel to study this problem, and
we found that the area expansion is abnormally large in the cap
region. The reason is that we applied a uniformpressure on the cap
region of the cell with a linear distribution along the aspiration
length, which is different from the interaction pressure applied on
thecytoskeleton fromthe lipidbilayer in the two-componentmodel.
Basically, the large local areamodulus of the bilayer is absent in the
one-component DPD model. In the Monte Carlo simulation (3),
instead of applying the pressure to deform the cell, a canonical
shape (cylinder/sphere) was assumed; the vertices of the triangular
network were allowed to slide along this assumed shape.

Membrane Fluctuations Simulation Setup. We use the two-compo-
nent DPD model to simulate membrane fluctuations. Because
cells adhere to the substrate in the experiment, we fixed 13% of
vertices on the RBC bottom and the simulations show that the
effect of attachment strength (percentage of fixed vertices on the
RBC bottom) on the amplitude fluctuations is negligible as long
as more than 13% of the vertices are fixed (13). The extracellular
and intracellular fluids with different viscosities were modeled
using DPD particles. The top surface with a radius of 3 μm was
monitored.
We did not use the full resolution model to study this problem

because of computational cost. To reach the same timescale, the
full resolution model with Nv = 23;867 is about 8,000 times more
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expensive than the model with Nv = 500. The latter takes 1 h to
run a typical case on a 32-core 800-MHz node.
Although we invoke a systematic coarse-graining approach (11,

12) for the in-plane mechanical properties such as shear modulus
in the current study, the proper coarse-graining procedure for the
properties of the bilayer–cytoskeletal interaction in the vertical
direction in thermal fluctuations is unclear. For example, if we
assume kbs = k23;867bs in the full resolution model with Nv = 23;867
and kbs = k500bs in the coarse-grained model with Nv = 500, it can be
derived that k500bs = 23;867=500 · k23;867bs ≈ 48 · k23;867bs , because k23;867bs
represents the stiffness of one junctional complex connection
whereas k500bs represents the stiffness of 48 junctional complex
connections. However, simulation results show this simple coarse-
graining procedure makes the 500 DPD particle model too stiff in
membrane fluctuation simulations. Lumping of 48 junctional
complexes into one connection means that these junctional com-
plexes always move with the same displacement, but in reality or in
the simulation using the full resolution model with Nv = 23;867,
the fluctuations of these 48 junctional complexes follow a distri-
bution and their motions are not synchronized. Instead, simu-
lations show that more reasonable results can be obtained by using
k500bs ≈ k23;867bs . Therefore, in the simulations of membrane fluctua-
tions, we use the same physical values of kbs, cbs, and fbs for dif-
ferent coarse-graining levels. For other simulations such as micro-
pipette aspiration and tank-treading motion, we found the effect
of kbs is insignificant. The parameters used in this simulation are
listed in Table S1.

Tank-Treading Simulation Setup. In the simulations of the tank-
treading (TT) motion of a RBC in shear flow, we place a single
RBC in linear shear flow between two planar solid walls and
simulate the TT motion at different shear rates, using both the
one-component and the two-component RBC models. The no-
slip boundary condition between the fluid and the solid wall and
that between the fluid and the RBCmembrane are enforced using
the bounce-back condition (17). The viscosity of the suspending
medium is specified as η0 = 0:0289 Pa s based on the experiment
(18) and the viscosity of the cytosol inside the RBC is given as
η1 = 0:006 Pa s (19). For the membrane viscosities, it was found
that the viscosity of the cytoskeleton is about 50 times larger than
that of the lipid bilayer (8). By selecting the bilayer and cyto-
skeleton viscosities as ηb = 0:008 Pa s and ηs = 0:372 Pa s, re-
spectively, the TT frequency matches the experimental results
well as shown in Fig. 3A in the main text. Other parameters used
in this simulation are listed in Table S1.

Channel Flow Stretching Simulation Setup. Channel flow stretching
experiments have been carried out to examine the response of cells
attached to a substrate to shear stresses exerted by an incoming
flow. In a typical channel flow setup, erythrocytes are allowed to
sediment inside a channel consisting of two parallel plates. The
substrate is coatedwith BSA so that most cells do not adhere to the
bottom plate with large attachment areas. When external flow is
introduced, the cells deform while one point (in some cases more
than one) remains attached to the substrate. Long membrane
strands (tethers)mayappearwhen thehydrodynamic shearexceeds
a certain threshold value (∼ 1:5 dyn=cm2 or 0:15 pN=μm2) (20).
In the simulation of whole-cell stretching with a line attachment

between the cell and the substrate, two points at the bottom of the
cell are fixed as shown in Fig. 4A, to create a line attachment.
Because the line attachment edge of the cell was between 2 μm
and 3 μm in the experiment, the distance between these two points
is chosen with an average value of 2.5 μm in our simulations.
In the case with one attachment point, the cell attaches to the

substrate not at a geometric point but within a small attachment
area. In our model this attachment area is depicted as a circular
area on the cell membrane whose diameter Da is chosen to be

0:15 μm, which is within the same range as the diameter of the
tether estimated from optical and scanning electron photo-
micrographs, i.e., 0.1–0.2 μm (20). It is important to note here
that the two are not expected to be exactly the same, because the
radius of the tether Rt depends on the applied force f0 by the
relation Rt = 2πkc=f0, where kc is the bending stiffness (21).

Parameter Estimation.The default values of themain parameters of
the two-componentDPDmodel are listed in Table S1 for different
cases. The initial membrane shear modulus without deformation
μs is measured as 6 pN=μm in the micropipette aspiration ex-
periment (19), but at a smaller value in the thermal fluctuations
experiment (22). The shear modulus increases with deformation
due to strain-induced stiffening (3) and may decrease at very
large deformation due to spectrin unfolding (23). It can be one
order higher for malaria-infected RBCs (24, 25). The bending
modulus kc = 2:4× 10−19 J is a relatively well-accepted value (19).
The membrane viscosity is measured as about 1.0 Pa s (26, 27),
which is considered the sum of the bilayer viscosity ηb and the
cytoskeleton viscosity ηs. According to Berk et al. (8), the cyto-
skeleton viscosity is 50–100 times larger than the bilayer viscosity.
The membrane viscosity plays a significant role in tank-treading
frequency (17) and by comparing predicted tank-treading fre-
quency with experimental data we estimated typical values of ηb
and ηs as shown in Table S1 and use them as default values.
The strength of the bilayer–cytoskeletal interaction bond is

estimated on the order of 10 pN on a junctional complex in the
current study by simulating the channel flow stretching experi-
ment. If we assume the bond displacement to be around 0.2 μm
when the bond breaks, a rough estimation of kbs can be obtained
as kbs = 10 pN/0.2 μm = 50 pN/μm for a junctional complex. We
used a default value of kbs = 46 pN=μm as shown in Table S1. In
addition, if we assume the stiffness of the bilayer–cytoskeletal
interaction bond is in the same order of the stiffness of a spec-
trin, the linearized stiffness of a spectrin modeled using the WLC
model is given as kbs = 3kBT=2pLc = 4 pN=μm with a persistence
length of P = 7.5 nm and contour length Lc = 200 nm (3); this can
be considered as a lower-bound value. The bilayer–cytoskeletal
friction coefficient fbs has been estimated as 0:194 pN·μm−1·s−1
for a single junctional complex based on the experimentally mea-
sured diffusivity of transmembrane proteins and the fluctuation
dissipation theorem (10). For simplicity, the vertical damping
coefficient is always set to be the same as the friction coefficient;
i.e., cbs = fbs.
In addition to these main parameters, other parameters are

given as follows: bilayer local area constraint kl = 5; 000 and global
volume constraint kv = 5; 000 (both in DPD units). They serve as
penalty parameters and their influence is negligible as long as their
values are high enough. In Eq. S7, n= 2, kp = 1:0, and lm = 2:2x0,
where x0 is the initial length of the spring in the cytoskeleton. The
biconcave shape is chosen to be the stress-free state of the cyto-
skeleton, and θ0 = 0 in Eq. S8; i.e., the spontaneous curvature is zero.
One objective of the current study was to probe the mechanical

characteristics associated with the bilayer–cytoskeletal viscoelastic
interactions, which cannot be measured directly by existing ex-
periments, and to investigate the effects of these mechanical
parameters on overall experimental results. For example, in the
fluorescence-marked micropipette aspiration experiments, we
validate our model by predicting local cytoskeletal spectrin de-
formation. It mainly depends on the constitutive law of the cyto-
skeleton. Because it is a quasi-static process, the result is indepen-
dent of dissipative parameters such as fbs, ηb, and ηs; the influence
of kbs is found to be small as well. In the membrane fluctuations
experiment, the amplitude of the fluctuations is independent of
viscous parameters fbs, ηb, and ηs (28, 29), and consequently we
mainly study the effect of kbs and μs. In the experiments involving
tank-treading motion in shear flow, we focus on the effects of
dissipative parameters fbs, ηb, and ηs, because they play a major
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role in influencing the tank-treading frequency. As for bilayer–
cytoskeletal detachment in the channel flow experiments, our
objective was to estimate bilayer–cytoskeletal bond strength σbs.
Because only one or two parameters in each simulation of these

four experiments are relevant to the result, our approach provides
a good protocol in validating the two-component model and in
investigating the effects of these parameters in isolation, in a sys-
tematic and controlled manner.
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Fig. S1. (A) Two-component DPD model of the whole cell (Nv = 23, 867, i.e., 23,867 DPD particles on each triangular network). (B) Local triangular networks of
the two-component model: lj is the spring length of the cytoskeleton; θj is the instantaneous angle between two adjacent triangles on the bilayer; and Aj is the
triangle area. (C) Normal and tangential interactions between the lipid bilayer and the cytoskeleton. j′ is the projection point on the lipid bilayer of vertex j on
the cytoskeleton; dj is the distance between point j and point j′;fFj is the tangential friction interaction force, whereas fEj is the normal elastic interaction force;
and nj is the normal direction vector of the bilayer triangle. (D) Physical picture of the local bilayer–cytoskeletal interaction. Although there are two kinds of
interactions in each junctional complex, including the major connections via band 3 and ankyrin and the secondary connections via actin, glycophorin C, and
band 4.1, we consider them together as an effective bilayer–cytoskeletal interaction in one junctional complex and model it as a normal elastic force and
a tangential friction force. The vertical damping force fDj and the random force fRj are not shown for clarity.

Peng et al. www.pnas.org/cgi/content/short/1311827110 5 of 6

www.pnas.org/cgi/content/short/1311827110


Table S1. Main parameters of the two-component DPD model

Study cases μs, pN/μm kc , J ηs, Pa s ηb, Pa s kbs, pN/μm fbs, pN·μm−1·s−1

Default 6 2.4e-19 0.372 0.008 46:0 0:194
Micropipette 6 2.4e-19 Independent Independent 46:0 Independent
Fluctuations Table S2 2.4e-19 Independent Independent Fig. 2A Independent
Tank treading 6 2.4e-19 0.372 0.008 46:0 Fig. 3B
Channel flow 6 2.4e-19 Independent Independent 46:0 Independent

μs, initial cytoskeleton shear stiffness (19); kc , bilayer bending stiffness (19); ηs, cytoskeleton viscosity (27);
ηb, bilayer viscosity (8, 27); kbs and fbs, the elastic and friction coefficients of the bilayer–cytoskeletal inter-
actions (10).

Table S2. Shear moduli of healthy RBCs and ring-stage RBCs at the physiological and febrile
temperatures obtained in ref. 25

Healthy, 37 °C, pN/μm Healthy, 41 °C, pN/μm Ring, 37 °C, pN/μm Ring, 41 °C, pN/μm

6:2 4:9 14:5 20:4
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