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SI Materials and Methods
Methods. Observers.Observers had normal to corrected-to-normal
vision and provided written consent under a University of Cal-
ifornia, Irvine institutional review board protocol. They partici-
pated in 9,984 experimental trials per observer. Observers were
randomly assigned to experimental groups (P, O, or OP, with 12,
11, and 10 completed observers, respectively).
Design. Observers discriminated the orientations of a Gabor
(windowed sinewaves) tilted ±5° top clockwise (“right”) or
counterclockwise (“left”) from a reference angle R of either –35°
or +55°. Test locations were on one or another diagonal (NW/SE
or NE/SW) at 5.67° eccentricity. Zero noise and high noise test
conditions were intermixed within each testing block. Observers
were randomly assigned to switch group, initial reference angle,
and training positions. They trained for eight blocks over four
sessions in an initial task, switched tasks, and trained for another
eight blocks or four sessions. Contrast thresholds were measured
using adaptive staircase methods (SI Materials and Methods,
Staircases) tracking 75% correct.
Apparatus. A Macintosh G4 using the internal 10-bit video card
with a refresh rate of 67 Hz and resolution of 640 × 480 pixels
displayed stimuli on a 19” Viewsonic color monitor. Luminance
was calibrated with psychophysical matching judgments and
measurement with photometer. A lookup table linearized the
luminance range into 127 levels from 1 cd/m2 to 67 cd/m2. A chin
rest stabilized the observer’s head.
Stimuli. The signal Gabor appeared within a 64 × 64 pixel patch
(3° × 3° visual angle at a viewing distance of 72 cm): lðx; yÞ=
l0
�
1:0± c sinð2πf ðy sinðθÞ  ± x cosðθÞÞ× exp

�x2 + y2

2σ2
��
, with angle θ

of –35° ± 5° or +55° ± 5°, spatial frequency f = 2 cycles per
degree (cpd), and SD of the Gaussian envelope σ = 0.4°, maxi-
mum contrast c, and midgray luminance l0 is the midgray. Each
64 × 64 noise image had 2 × 2 pixel noise elements with
Gaussian-distributed contrasts with mean value 0 and SD 0.33,
newly generated for each frame and trial. Signal and noise im-
ages were combined by alternation at the frame rate (SI Mate-
rials and Methods, Procedure). A single Gabor appeared on any
trial, preceded by 150 ms by a brief arrow indicating the test
location. Stimuli were generated using MATLAB with Psy-
chToolbox extensions.
Sample images and power spectra for the eight stimuli (four

angles, with and without external noise) are shown in Fig. S1. The
signal Gabors and the external noise images were integrated via
temporal integration of frames shown in rapid succession, as
described next.
Procedure. Observers trained at one reference orientation and
layout for four sessions and then switched to a new task for
another four sessions. Each session was 1,248 trials of four blocks
of 312 trials plus two practice trials. Sessions 1 and 5 began with
a brief preexposure to the locations and timing, followed by 10
practice trials. A beep occurred 250 ms after the central fixation
cross; 250 ms later, the stimulus sequence (two white noise
frames + two Gabor frames + two new noise frames) appeared
for a total of 90 ms (15 ms/frame), with a central precue arrow
appearing 100 ms before the oriented Gabor, which prevented
eye movements. Staircases set the contrasts of the Gabors, as
described in the next section. Observers responded with the “j”
(“clockwise/right”) or “f” key (“counterclockwise/left”). A neg-
ative feedback tone followed each error. There was a 750 ms
intertrial interval.
Staircases. Adaptive staircases (1) were used to track threshold
Gabor contrasts. The 3/1 and 2/1 staircases track accuracies of

79.4% and 70.7% correct, respectively, by reducing contrast by
10% after either three or two consecutive correct responses, and
increasing contrast 10% after each incorrect response. Staircases
were interleaved, one for each external noise level, target accu-
racy, and testing location. There were 1,248 trials per session,
672 in 3/1 staircases and 576 in 2/1 staircases organized into four
blocks (84 and 72 trials per block per staircase for 3/1 and 2/1
staircases, respectively). Threshold contrast levels averaged an
even number of reversals for each staircase sequence, excluding
the first four or five, to limit bias. Averaging the 3/1 and 2/1
staircases tracks an overall performance level of ∼75% correct.
These were averaged over two blocks, to yield two larger block
thresholds per session.

Model Implementation of the Integrated Reweighting Theory. The
integrated reweighting theory (IRT) is a multichannel, multilevel
network model to account for transfer of perceptual learning
over location. Learning occurs through channel reweighting (2).
The IRT architecture includes location-independent as well as
location-specific representations. It incorporates computational
modules from the prior augmented Hebbian reweighting model
(AHRM) that modeled perceptual learning in a single location
(3). The IRT makes predictions about transfer of perceptual
learning, and also has implications (not tested in this study)
concerning training task mixtures. Here we provide a description
and equations for the representation subsystem and the learning
system, following refs. 3, 4.
The representation subsystem consists of orientation- and

frequency-selective units. The activation value A(θ, f) of the
representation units corresponds to the normalized spectral en-
ergy in each channel. A set of retinotopic phase-sensitive maps
S(x, y,θ, f, ϕ) is computed for the input image I(x, y):

Sðx; y; θ; f ;ϕÞ= �
RFθ;f ;ϕðx; yÞ⊗ Iðx; yÞ�2+;

for units tuned to different spatial frequencies f, orientations θ,
and spatial phases ϕ. We assumed five spatial frequency bands
at {1, 1.4, 2, 2.8, 4 c/d}, orientations sampled every 15°, or {0°,
±15°, ±30°, ±45°, ±60°, ±75°, +90°(=–90°)}, and four spatial
phases {0°, 90°,180°, 270°}. Based on estimates of cellular tuning
bandwidths in primary visual cortex, the bandwidth of the spatial
frequency tuning was set at hf = 1 octave, and the bandwidth of
the orientation tuning was set at hθ = 30° (half-amplitude full-
bandwidth). The location-specific representations used these val-
ues, whereas the more broadly tuned location-invariant repre-
sentations used spatial frequency and orientation bandwidths of
1.6× those of the location-specific units.
The input image I(x, y) is convolved with the filter for each unit

by fast Fourier transform. This is followed by a half-squaring
rectification operation that generates phase-sensitive activation maps
analogous to “simple cells,” followed by spatial phase pooling and
inhibitory normalization (5): Eðx; y; θ; f Þ= P

ϕ Sðx; y; θ; f ;ϕÞ+ «1

and Cðx; y; θ; f Þ= aEðx;y;θ;f Þ
k+Nðf Þ , respectively. The noise term «1 is

Gaussian-distributed internal noise source with mean 0 and SD
σ1. The normalization pool N(f), consistent with physiological
reports, is essentially independent of orientation and only mod-
estly tuned for spatial frequency. The value a is a scaling factor,
and k is the saturation constant that operates at near-zero con-
trasts. Spatial phase is pooled for the orientation judgment task,
where phase is not relevant, but it could be retained for judgments
that are contingent on phase. The spatial activation maps are
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combined and weighted through a Gaussian kernel of radius Wr
commensurate with the size of the target Gabor. A second
Gaussian-distributed noise of mean 0 and SD σ2 reflects a second
source of stochastic variability:A′ðθ; f Þ=P

x;yWrðx; yÞCðx; y; θ; f Þ+
«2. These responses are then passed through an activation function
with gain parameter γ to limit the range of the activation of the

representation units: Aðθ; f Þ=
8<
:

1− e−γA′
1+ e−γA′ Amax;  if A′≥ 0

0;  otherwise
.

The system makes a behavioral decision on each trial by
combining the sensory information in the activation pattern over
the representation units in a single decision unit. The decision
variable weights these inputs by the current weights wi, including
a top-down bias factor b with weight wb : u=

P65
i=1wiAðθi; fiÞ−

wbb+ «d, and includes random decision noise «d (Gaussian with
mean 0 and SD σd). The “early” activation of the decision unit o′
is a sigmoidal function of the weighted activations u with gain
γ: o′ = GðuÞ =  1− e−  γu

1+ e−γu Amax. A negative o′ maps to one response
(left), whereas a positive o′ maps to the other response (right).
The weight structure is learned through updating on every trial.

When feedback is available, the feedback F is used to compute
a new, late level o: o=Gðu+wfFÞ (late). Learning occurs during
this late phase (6). The effect of feedback depends upon its weight
wf. The late activation will go to its maximum (±Amax = ±1)
with feedback (F = ±1), and the feedback weight is relatively high,
whereas low feedback weight will only slightly shift activation in
the direction of the correct response. If no feedback signal is
present (F = 0), learning operates on the early decision activation
(o = o′), which is usually in the intermediate range. For all but the
lowest accuracy conditions, the weights still move statistically to-
ward a more optimum weight distribution because the activations
at decision are correlated with the correct response.
Learning occurs by updating the synaptic connection strengthswi

from sensory representation units i to the decision unit. The change
in each weight, wi, depends on the learning rate, η, the activation
at the presynaptic connection, Aðθ; f Þ, the postsynaptic activation
compared with its long-term average, ðo− oÞ, and the distance
of the weight from the minimum or maximum saturation value,
wmin or wmax. So the change in weight is: Δwi = ðwi −wminÞ½δi�− +ðwmax −wiÞ½δi�+, where δi = ηAðθi;fiÞðo− oÞ; and the average of
postsynaptic activation is oðt+ 1Þ= ρoðtÞ+ ð1− ρÞoðtÞ. The Heb-
bian term δi tracks systematic stimulus–response correlations rather
than mere response bias. The Hebbian learning process is aug-
mented not just by feedback (when it occurs), but also by a criterion
control that tracks deviations of the recent response frequencies
from 50% or the instructed presentation probabilities in the ex-
periment. Top-down input from a bias unit b feeds into the decision
unit with weight wb. The bias b(t + 1) on each successive trial is
a running average of responses r(t), weighted exponentially with
a time constant of 50 trials (ρ = 0.02), rðt+ 1Þ= ρRðtÞ+ ð1− ρÞrðtÞ.
Prior studies found more pervasive response biases, and corre-
spondingly lower weights on adaptive criterion control, in the ab-
sence of feedback (4). Both bias control and feedback augment
pure Hebbian reweighting. Bias control tracks the model’s re-
sponses, whereas feedback tracks external teaching signals. Bias
control is more important to learning in the absence of trial-by-trial
external feedback (4).

Simulation Methods
The IRT simulation, implemented in MatLab, takes grayscale
images, computes activity in location-specific and location-
independent representation units, generates a response, and then
updates the weights. The simulated experiment exactly replayed
the procedure in the human experiment. Filter spacing and
orientation and spatial frequency bandwidth parameters, the
radius of spatial summation, and several other parameters were
set a priori for the location-specific representations (3, 4). The

bandwidths of location-specific representations were 30° for
orientation and 1 octave in spatial frequency (full bandwidth
at half height), every 15° in orientation and every one-half
octave in spatial frequency. The spatial frequency and orien-
tation bandwidths of location-independent representations
were set at 1.6 times the location-specific values based on
preliminary fits to the data.
Typical activation patterns in location-specific and location-

independent representations for the four oriented Gabor stimuli
with and without external noise are shown in Fig. S2, with the
patterns for the to-be-discriminated angles shown in the same
panels for ease of comparison. The patterns vary for each sample
of external noise and for different Gabor contrasts.
The performance levels and the learning curves from experi-

mental data were fit with a scaling factor (a), two parameters for
internal additive noise (σ1) and for internal multiplicative noise
(σ2), one each for location-specific and one for location-
independent representations, a decision noise (σd), and learning
rates (η). The model was optimized for the experimental data
through successive grid search of the parameter values, as de-
scribed below. Scaling parameters, noise parameters, and learning
rate were adjusted to yield the best least-squares fit of the model
to the average data. The parameter for the activation function of
the decision unit, γ, was set to 3.5 after some initial testing. The
predicted performance curves were based on 1,000 iterations of
the model experiment.
The implementation of the IRT (SI Materials and Methods,

Model Implementation of the Integrated Reweighting Theory) was fit
to the data by grid search. To speed the simulation, large caches
of the representation activations for stimulus images with dif-
ferent samples of external noise were computed for many Gabor
contrasts. This image processing stage is very time-consuming,
requiring up to several days of computation. Using precomputed
caches in simulated learning runs avoided duplicating these time-
consuming steps. Location-independent activations were com-
puted by passing the images through the representation sub-
system with broader bandwidths. The grid search of model
parameters was also computationally intensive.

SI Results
Learning over practice is shown in the weight structures for the
location-specific and location-independent representations. Fig.
S3 displays the changes in weights from the beginning of the
experiment (Fig. S3, Left) to the end of the first phase of training
(Fig. S3, Center), and the end of the second phase of training
(Fig. S3, Right). Learning shows increased weights for relevant
spatial frequency and orientation channels and decreased weights
for irrelevant channels for both the relevant location-specific
units and the location-independent units. It also shows reduced
reliance on location-independent representations. Subsequent
training on the new task further trains the location-independent
weights, and retrains the same location-dependent weights for
orientation changes, or newly trains the second location weights
for changes of just position, or position and orientation.
Examination of themodel predictions over themany parameter

combinations tested during optimization of the fit of the IRT
model to the data essentially all showed the same ordinal pattern
at transfer for the P, O, and OP conditions. So the ordinal
predictions for the three switch conditions are quite general.
Finding optimal parameters largely served to match overall level
of performance and speed of learning. The weight structures
showed similar qualitative patterns with learning.
Search grids were programmed that examined factorial com-

binations of the manipulated parameters, and looked for regions
of higher values of fit. Finer grids within these regions were tested.
Although we searched in most major regions of parameter
combinations through these means, no search grid of this type can
be exhaustive, so it is possible that some additional adjustment of
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parameters would have further optimized the fit of the model to
the data.
For example, increasing noise terms generally increases thresh-

olds, but differentially increasing additive noise increases
thresholds in low noise more than that in high noise, whereas
increasing multiplicative noise affects thresholds in high noise
more. Increasing the scaling factor normally improves perfor-
mance; however, if the scaling factor is too big, the saturation
of activation makes the initial performance worse. Finally, if
learning rate is increased, learning is faster. The profile of initial
weights can also be manipulated. Such manipulation mainly

changes initial performance of a training or transfer session. We
finally chose one with moderate tuning to orientation and no
tuning to spatial frequency, because it provided a better fit to the
data. With a square-wave profile of initial weights—that is, less
orientation tuning—the discrepancy of performance between
zero and high noise is larger in the simulation than in the be-
havioral data. Specifically, a broad-tuned profile of initial weights
worsens performance in high noise more by channeling more ex-
ternal noise into the decision unit. The amplitude of initial weights
can also affect the initial performance.
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Fig. S1. Sample images and power spectra from the experiment. A, B, C, and D show images corresponding with intermediate contrast Gabors without
external noise tilted top left and right of the relevant implicit reference angle, with E, F, G, and H corresponding power spectra. I, J, K, and L show sample high
noise tests with high contrast Gabors, with corresponding power spectra in M, N, O, and P. Power spectra show orientation on the angular axis (left tilting to
right tilting) and spatial frequency (low to high) on the radial axis in polar coordinates.
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Fig. S2. Average activation profiles in the location-specific and location-independent representations for the four oriented Gabor stimuli with and without
external noise, with the two orientations to be discriminated shown in the same panels, with center orientation of filters on the x-axis, center spatial frequency
of filters indicated by line color, and arbitrary activation units on the y-axis. The activation profiles show the largest discriminative information in critical
orientations in the spatial frequency band closest to the stimulus, and the two neighboring bands.

Fig. S3. The connection weights on location-specific and location-independent representations over the course of learning: (A) initial weights; (B–D) weights
at the end of the initial training phase for switches of position P, orientation O, and both orientation and position OP; (E) weights after the transfer phase for
switches of position P; (F) weights after the transfer phase for switches of orientation O; and (G) weights after the transfer phase for switches of both position
and orientation OP. Activity in spatial frequency bands 2.0 cpd (red), 1.0 cpd (blue), 1.4 cpd (green), 2.8 cpd (cyan), and 4.0 cpd (magenta).
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