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S1 Examples. Meaning of ρ and ν. Self organization

Example 1. (PG): Public goods game:

vAk = −C + (k − 1)B/(n− 1),

vNk = kB/(n− 1),

where, unless stated otherwise, we suppose that 0 < C < B. This is, by far, the most
widely studied model of cooperative/altruistic behavior. At a net cost C to itself, each
type A provides a total benefit B shared uniformly among the other n− 1 members of the
group. This model can also be used when at a gross cost c to itself, each type A provides
a total benefit b shared uniformly among the n members of the group, self included. By
defining C = c− b/n and B = (n− 1)b/n, we obtain the payoff functions displayed above
also in this case.

Example 2. (IPG): Iterated public goods game. Altruists cooperate conditionally:

vAk =

{
−C + (k − 1)B/(n− 1), if k ≤ a,

T (−C + (k − 1)B/(n− 1)), if k > a,

vNk =

{
kB/(n− 1), if k ≤ a,
T kB/(n− 1), if k > a,

for constants 0 < C < B, T ≥ 1 and a ∈ {1, 2, ..., n − 1}. Here we suppose that a public
goods game is repeated a random number of times τ ≥ 1, with average IE(τ) = T . Each
time each member of the group can cooperate at a cost C to itself, resulting in a benefit
B/(n − 1) to each one of the other members of its group. Defectors incur no costs and
produce no benefits. We suppose that types A cooperate in the first round, and afterwards
only cooperate if at least a other members of the group cooperated in the previous round.
This is a generalization of the well known tit-for-tat strategy, which corresponds to the
case n = 2, a = 1. We will refer to the strategy of the types A in this example then as
“multi-individuals-tit-for-tat (with threshold a)”. In the paper, we emphasized the case
in which each type A cooperates in the first round, and in later rounds cooperates if and
only if its payoff in the previous round was not negative. This corresponds to a taking the
smallest integer value that is larger than or equal to (n− 1)C/B (since the PG has vAk < 0
if and only if k < 1 + (n− 1)C/B). In this important case, we call the strategy of types A
“payoff dependent contingent cooperation”.

The IPG was studied independently in [3] and in [9], in the trait-group framework,
which corresponds to the 2lFW with m = 1, i.e., random assortment in groups. Both
papers identified stable equilibria with positive fractions of types A. But they also observed
that altruists could not invade when rare, when m = 1.

The relevance of this model was emphazised in the paper, and it will be analysed in
detail in Section S8.
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Example 3. (THR): Threshold model:

vAk =

{
−C, if k < θ,
−C + A, if k ≥ θ,

vNk =

{
0, if k < θ,
A′, if k ≥ θ,

for positive constants C, A and A′, and an integer θ ∈ {1, 2, ..., n}. The idea here is simple:
the allele A carries a cost, but allows its carriers to gain benefits if sufficiently many are
in the group. Unless otherwise stated, we assume that A > C. Types N obtain benefits
also when types A do, but we allowed for the possibility that these benefits are different
from those of the types A. These payoff functions can be seen as simplifications of more
realistic ones, in which payoffs to types A initially grow slowly with k, then steeply, and
then quickly saturate. For instance, the model of coordinated punishment of [2] provides
examples of this sort. In [1] a class of models that bridge between the PG and the THR
was introduced and their relevance discussed. Similarly to the results of [3] and [9] for
the IPG, it was shown in [1] that the THR can have polimorphic equilibria, with Types
A and N coexisting, when assortment is random, i.e., in the trait-group framework, that
corresponds to 2lFW with m = 1. In this case, as for the IPG types A can nevertheless
never proliferate, when p is small (the equilibrium with no types A is an ESS). In [17],
the case n = 3 of the threshold model (called there “stag hunt game”) was discussed in
connection to the conceptual issue of the role of Hamilton’s rule.

The THR behaves in a very simple way under iteration. Suppose that the game is
repeated T times over a life-cycle. And suppose that types A are “payoff dependent con-
ditional cooperatores”, meaning that a type A cooperates in the first round, and in later
rounds cooperates if and only if its payoff in the previous round was not negative. The
result is that types A cooperate exactly once if k < θ, and cooperate T times if k ≥ θ. The
total payoffs to types A and to types N over the life-cycle are then those of a THR with
the same value of C, with A replaced by T (A− C) + C and A′ replaced by TA′.

Fig. ?? displays instances of the three models above. A more detailed discussion of
these and other examples, can be found in [15], where several conceptual issues are also
considered. A good source of motivated examples is [8]. Fig. S2 displays curves of ρ
vs. m for instances of the three examples above. In each case, ρ is decreasing in m,
and there is a single critical value ms defined by ρ(ms) = 1 (the subscript ‘s’ stands for
‘survival’ of the allele A, when rare). The critical rate of gene flow that allows types A
to proliferate when rare can also be identified by the critical relatedness R0

s = R0(ms),
where R0(m) = (1−m)2/(n− (n− 1)(1−m)2) ≈ 1/(1 + 2nm) (the approximation refers
to the case in which m is small) is the relatedness obtained from neutral genetic markers
(see Sections S5 and S7). Fig. S3, Fig. S5 and Fig. S7 display values of ms as function of
the strength of selection δ. In these pictures, the short horizontal red lines indicate the
limits as δ → 0, obtained by using (A2). Note the good agreement between these values
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obtained from (A2) and the asymptotic behavior of ms with vanishing δ in the pictures. As
in Panel A of Fig. 2 in the paper, the region above the curve defined by ms represents the
region where the allele A cannot invade the population, while in the region below this curve
it can invade the population. Fig. S4, Fig. S6 and Fig. S8 display corresponding values
of critical relatedness R0

s = R0(ms) above which types A proliferate, as a function of the
strength of selection δ. In Fig. S5 and Fig. S6, the case T = 1 corresponds to the PG, and
comparison between the results for the various values of T illustrates again the strength
of group selection under contingent cooperative behavior. In Fig. S7 and Fig. S8 a similar
phenomenon is shown for the threshold model, under contingent cooperation. Fig. S9 shows
how, even for the standard public goods game, with B = 2C, the distribution ν depends
on δ and m. Fig. S10, Fig. S11, Fig. S12 and Fig. S13 illustrate features of the evolution
f(t+ 1) = f(t)M(A+B), that self-organizes the copies of the allele A. These pictures also
illustrate the meanings of ρ and ν.

It is natural to wonder if there are simple conditions under which one can guarantee
that (a) when m = 1 (random assortment) types A will not proliferate when rare, but
(b) that they will proliferate when rare when the migration rate m is low. The following
conditions, satisfied by the three examples above, imply, respectively, each one of these two
facts (see Section S7).

(C1) vA1 < 0, i.e., wA1 < 1 = wN0 , so that an isolated type A individual has lower fitness
than the wild type N has in groups without altruists.

(C2) vAn > 0, i.e., wAn > 1 = wN0 , so that type A individuals have greater fitness when in
single-type groups than type N individuals have when in single-type groups.

Figure S1: Payoff profiles. Payoffs vAk for types A are represented by black squares, while
red circles depict payoffs vNk for types N. From left: Public goods game (PG, Example 1)
for n = 20, C = 1 and B = 5. Iterated public goods game (IPG, Example 2) for n = 20,
C = 1, B = 5, a = 4 and T = 2. Threshold model (THR, Example 3) for n = 20 C = 1,
θ = 4 and A = A′ = 10.
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Figure S2: Perron-Frobenius eigenvalues ρ as a function of m for δ = 0.1, 0.2 and 0.4. From
top to bottom: Public goods game (PG, Example 1) with n = 20, C = 1, B = 5. Iterated
public goods (IPG, Example 2) with n = 20, C = 1, B = 5, a = 8 and T = 10. Threshold
model (THR, Example 3) with n = 20, C = 1, θ = 4, A = A′ = 10. Critical migration
values ms are obtained by solving ρ(ms) = 1.
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Figure S3: Public goods game (Example 1): Panel A represents critical values ms as a
function of the strength of selection δ. Curves correspond to the case C = 1, B = 2 and
n = 10 (top, black dotted line), n = 20 (middle, blue dashed line) and n = 50 (bottom,
magenta full line). Short horizontal red lines indicate critical values at the weak selection
limit obtained from (A2) in the paper. The inset shows the same curves within the full
range of possible values for ms, illustrating the well known fact that for this model, only
under exceptional conditions can the allele A invade. Panel B depicts the same conditions
except for B = 5.
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Figure S4: Public goods game (Example 1): Critical relatedness R0
s = R0(ms) above which

types A proliferate, as a function of the strength of selection δ. (R0(m) = (1 −m)2/(n −
(n− 1)(1−m)2) ≈ 1/(1 + 2nm) is the relatedness obtained from neutral genetic markers;
see Sections S5 and S7). Panels correspond to the same parameter values as in Fig. S3:
C = 1, B = 2 and n = 10 (bottom, black dotted line), n = 20 (middle, blue dashed line)
and n = 50 (top, magenta full line). Panel B depicts the same conditions except for B = 5.
Short horizontal red lines indicate critical values at the weak selection limit obtained from
Hamilton’s rule R0

s = C/B, or, equivalently, from (A2) in the paper. Note the appreciable
effect of the strength of selection.
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Figure S5: Iterated public goods game (Example 2): Critical values ms as a function of
the strength of selection δ. Panel A depicts the case n = 20, C = 1, B = 5, a = 4 with,
respectively from bottom to top, T = 1 (dotted black line), T = 10 (dashed blue line),
T = 100 (dot-dashed magenta) and T = 500 (green full line). Panel B depicts the same
conditions except for a = 8. Short horizontal red lines indicate critical values at the weak
selection limit obtained from (A2) in the paper. Each curve has T fixed, but to compare
different values of T , the product δT is a natural measure of strength of selection, and is
used in the horizontal axis.

8



Figure S6: Iterated public goods game (Example 2): Critical relatedness R0
s = R0(ms)

above which types A proliferate, as a function of the strength of selection δ. (R0(m) =
(1−m)2/(n− (n−1)(1−m)2) is the relatedness obtained from neutral genetic markers; see
Sections S5 and S7). Panels correspond to the same parameter values as in Fig. S5: Panel
A depicts the case n = 20, C = 1, B = 5, a = 4 with, respectively from top to bottom,
T = 1 (dotted black line), T = 10 (dashed blue line), T = 100 (dot-dashed magenta) and
T = 500 (green full line). Panel B depicts the same conditions except for a = 8. As in
Fig. S5, each curve has T fixed, but to compare different values of T , the product δT is a
natural measure of strength of selection, and is used in the horizontal axis. Short horizontal
red lines indicate critical values at the weak selection limit obtained from (A2) in the paper.
These values are: Panel A: 0.2000, 0.0865, 0.0402, 0.0243. Panel B: 0.2000, 0.1099, 0.0638,
0.0452. Note the very low values of critical relatedness in Panel A.
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Figure S7: Threshold model (Example 3): Critical values ms as a function of the strength
of selection δ. Panel A depicts the case n = 20, C = 1, θ = 4, A′ = 2A, with, respectively
from bottom to top, A = 5 (dotted black line), A = 10 (dashed blue line), A = 50 (dot-
dashed magenta) and A = 100 (green full line). Panel B depicts the same conditions
except for θ = 8. Short horizontal red lines indicate critical values at the weak selection
limit obtained from (A2) in the paper. Each curve has A fixed, but to compare different
values of A, the product δA is a natural measure of strength of selection, and is used in
the horizontal axis.
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Figure S8: Threshold model (Example 3): Critical relatedness R0
s = R0(ms) above which

types A proliferate, as a function of the strength of selection δ. (R0(m) = (1 −m)2/(n −
(n− 1)(1−m)2) is the relatedness obtained from neutral genetic markers; see Sections S5
and S7). Panels correspond to the same parameter values as in Fig. S7: Panel A depicts the
case n = 20, C = 1, θ = 4, A′ = 2A, with, respectively from top to bottom, A = 5 (dotted
black line), A = 10 (dashed blue line), A = 50 (dot-dashed magenta) and A = 100 (green
full line). Panel B depicts the same conditions except for θ = 8. As in Fig. S7, each curve
has A fixed, but to compare different values of A, the product δA is a natural measure of
strength of selection, and is used in the horizontal axis. Short horizontal red lines indicate
critical values at the weak selection limit obtained from (A2) in the paper. These values
are: Panel A: 0.012 , 0.017, 0.044, 0.071. Panel B: 0.061 , 0.075, 0.137, 0.194. Note the
extremely low values of critical relatedness in Panel A. The large values of A can result from
contingent cooperation, based on feedback, as for the IPG. For instance, suppose that a
certain activity repeats itself T times over a life-cycle. Suppose also that in each repetition
the payoff is well described by the threshold model. If types A discontinue the participation
when their payoff in the previous round was negative (as in the IPG discussed in Fig 2
in the paper), then the resulting payoff over the T iterations is also given by a threshold
model, with the same value of C, but A replaced by (A− C)T + C, and A′ replaced with
A′T . This gives plausibility to values of A and A′ as large as those in this figure, since T
can be in the hundreds, or thousands (see discussion on the IPG in the paper).
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Figure S9: Public goods game (Example 1): Perron-Frobenius eigenvectors ν = (ν1, ..., νn)
represented in each box as a histogram, as a function of the strength of selection δ (rows) and
of the migration rate parameter m (columns). Critical migration rates ms are annotated
in each row. Perron-Frobenius eigenvalues ρ are also provided for each box. In this picture
we have C = 1, B = 2 and n = 20.
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Figure S10: Self-organization of copies of A. In these pictures we have PG with n = 2, C =
1, B = 3, δ = 0.3, resulting in ms = 0.2889. Pictures show evolution of f(t) = (f1(t), f2(t)),
started from several different initial distributions f(0). Circles over the lines mark f(t),
with t = 0, 1, . . . , 500 obtained by iterations of the map f(t + 1) = f(t)M(A + B). The
direction spanned by the eigenvector ν is represented as a dotted green line. Left side
(black): cases with ρ < 1, the allele A is eliminated; right side (red): cases with ρ > 1,
the allele A spreads. In the top row, m is far from ms: (A1) m = 0.3389, ρ = 0.9340,
ν = (0.8506, 0.1494); (B1) m = 0.2389, ρ = 1.078, ν = (0.7342, 0.2658). In the bottom row,
m is close to ms: (A2) m = 0.2890, ρ = 0.999856, ν = (0.7342, 0.2658); (B2) m = 0.2888,
ρ = 1.000014, ν = (0.7999, 0.2001). Note that in all cases f(t) reaches in a few generations
a steady state, in which it shrinks (ρ < 1), or grows (ρ > 1), as a multiple of ν. When
m approaches ms, the eigenvalue ρ becomes close to 1, the stationary movement along
the direction given by ν slows down and the trajectories towards this direction straighten
themselves, but are not slowed down.
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Figure S11: Self-organization of copies of A. In this picture we have IPG with n = 10,
C = 1, B = 3, T = 100, a = 2, δ = 0.01, and m = 0.153, slightly smaller than ms = 0.163.
Top part shows evolution of p(t), and bottom part shows corresponding evolution of f(t) =
(f1(t), ..., f10(t)), displayed as normalized histograms. Two initial conditions are compared:
(Red) f(0) = 10−2(1, 0, ..., 0), so that p(0) = 10−3. (Black) f(0) = 10−5(0, ..., 0, 1), so that
p(0) = 10−5. Note that from generation to generation the distribution of copies of A adjusts
itself to the same stationary distribution, “losing memory of the initial distribution”.
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Figure S12: Self-organization of copies of A. This picture corresponds to the same model
and situation described in Fig. S11, but with a different time-frame, including later times.
Note that eventually the two curves of p(t) become parallel straight lines, illustrating the
exponential growth of p(t) at rate ρ independently of the initial condition. This picture
also illustrates two other important points: 1) The possible non-monotonicity of p(t). 2)
The fact that the asymptotic rate of growth may be smaller than the initial rate of growth.
Indeed, computations of ∆p only indicate the long term prospects for the allele A, when
done under stationary conditions, as in (A1). The initial distribution of copies of A in
the red line produces neighbor modulated fitness for A below that of allele N, so that
∆p(0) < 0. In contrast, the initial distribution of copies of A in the black line produces
neighbor modulated fitness for A well above that of allele N, so that not only ∆p(0) > 0,
but this growth happens at an unsustainably high rate. The distribution ν, towards which
the copies of A self-organize is optimal for their stationary, stable, growth. This is so
because (ρ, ν) is the leading eigenpair of the driving matrix M(A + B): ν is the vector ν ′

that satisfies the eigenvalue (stationarity) equation ν ′M(A+B) = ρ′ν ′, with maximum ρ′.

15



Figure S13: Self-organization of copies of A. This picture corresponds to the same model
described in Fig. S11, but now m = 0.173 is slightly larger than ms = 0.163. Note that
again eventually the two curves of p(t) become parallel straight lines, illustrating in this
case the exponential decrease of p(t) at a rate independent of the initial condition. Here
again one can see that ∆p(0) is not indicative of the relevant long term evolution. The
self-organized distribution ν is still optimal for the proliferation of the allele A in a stable,
sustainable, fashion. But when ρ < 1, as in this picture, this optimal stable distribution
is still not good enough for A to spread, and instead, its copies are eliminated by natural
selection.
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S2 Use of Perron-Frobenius Theorem

When 0 < m < 1, the n × n matrix M(A + B) has all its entries strictly positive. The
Perron-Frobenius Theorem states that from this it follows that [13]
1) M(A + B) has an eigenvalue ρ that is real and positive and is larger in absolute value
than all the other eigenvalues of this matrix.
2) To ρ there corresponds a single left-eigenvector ν and a single right-eigenvector ζ. Both
eigenvectors have all their entries strictly positive. With no loss, we normalize them as
follows:

∑n
k=1 νk = 1, and

∑n
k=1 νkζk = 1.

3) The product ζν defines a n× n matrix, with the property that for t = 0, 1, 2, ...,

[M(A+B)]t = ρtζν + E(t),

where the error term E(t) satisfies maxi,j |Ei,j(t)| < αt, for some 0 < α < ρ.
We apply the theorem to our dynamical system f(t) as follows, If f(0) 6= (0, ..., 0), then

some of its entries are strictly positive, and hence f(0)ζ is a 1 × 1 matrix, with a strictly
positive entry C. Therefore,

f(t) = f(0)[M(A+B)]t = f(0)[ρtζν + E(t)]
= ρt[(f(0)ζ)ν + ρ−tf(0)E(t)] = Cρt(ν + e(t)),

(S1)

where the error term e(t) satisfies maxi |ei(t)| < ρ−t maxi,j |Ei,j(t)| < (α/ρ)t = βt, with
0 ≤ β < 1. Illustrations of (S1) appear in Fig. S10, Fig. S11, Fig. S12 and Fig. S13.

The error term in (A1) can now be expressed as follows. Combining the error terms
in (S1) and from the approximation W̄ = 1, which is of order p (a randomly chosen
individual has probability of order p of being in a group with types A), we obtain error of
order p2 + pβt in (A1). The left-hand-side of (A1) in this estimate refers to the linearized
evolution f(t + 1) = f(t)M(A + B), but if one wants to estimate ∆(p) for the original
non-linear dynamical system f(t), then the additional error term to (A1) is also of order
p2, by the very fact that this dynamical system admits a linearization close to (0, ..., 0).

S3 Focal individual. Sampling bias. Relatedness. FST .

IBD

Focal individual: Suppose that in generation t a group is chosen at random, and its
members are ordered in a random fashion. The chosen group is called the focal group, the
first individual in the ordering is called the focal individual and the second individual in the
ordering is called the co-focal individual. Note that this random experiment is equivalent
to choosing a focal individual at random and then choosing a co-focal individual at random
from the other n − 1 individuals in the focal’s group. We will denote by IPt probabilities
that refer to the sampling just described, and use IEt for corresponding expected values.
We denote by Aj the event that the jth individual in the random ordering of the members
of the focal group is a type A. And we denote by Ij the indicator of the event Aj, i.e.,
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Ij is the random variable that takes value 1 if Aj occurs and value 0 if its complement,
Acj, occurs. We denote by K = I1 + ... + In the random number of types A in the focal
group, and we set p̂ = K/n, for the random fraction of types A in the focal group. Clearly
IEt(p̂) = p(t).

Bayesian sampling bias: Conditioning on the focal being type A introduces bias on the
number of types A in the focal group. This is well know and intuitive, since it is more
likely that the focal individual will be type A if the focal group has many types A. The
standard Bayesian computation follows. For k = 0, clearly IPt(K = k|A1) = 0, while for
k ≥ 1,

IPt(K = k|A1) =
IPt(A1|K = k) IPt(K = k)∑
k′ IPt(A1|K = k′) IPt(K = k′)

=
(k/n) fk(t)∑
k′ (k

′/n) fk′(t)
=

k fk(t)∑
k′ k

′ fk′(t)
. (S2)

Relatedness as regression coefficient: If we define relatedness rt as the regression
coefficient of I2 on I1 (or equivalently, of A2 on A1, or of Ac2 on Ac1), we have

rt =
Covt(I1, I2)

Vart(I1)
=

IPt(A1A2)− (p(t))2

p(t)(1− p(t))
=

IPt(A2|A1)− p(t)
1− p(t)

=
Covt(1− I1, 1− I2)

Vart(1− I1)

=
IPt(A

c
1A

c
2)− (1− p(t))2

p(t)(1− p(t))
=

IPt(A
c
2|Ac1)− (1− p(t))

p(t)
. (S3)

Equivalently, rt can be defined by each one of the following four identities:

IPt(A2|A1) = rt + (1− rt)p(t), IPt(A
c
2|A1) = (1− rt)(1− p(t)),

IPt(A2|Ac1) = (1− rt)p(t), IPt(A
c
2|Ac1) = rt + (1− rt)(1− p(t)).

In particular,
rt = IPt(A2|A1)− IPt(A2|Ac1).

Wright’s FST : The relatedness rt is closely associated to Wright’s FST statistics, defined
as:

FST,t =
Vart(p̂)

Vart(p̂) + IEt(p̂(1− p̂))
.

The numerator measures intergroup variability, and the second term in the denominator
measures average intragroup variability. Note that the denominator can also be written as

Vart(p̂) + IEt(p̂(1− p̂)) = IEt((p̂)
2) − (IEt(p̂))

2 + IEt(p̂) − IEt((p̂)
2)

= −(p(t))2 + p(t) = p(t)(1− p(t)) = Vart(I1),
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showing that it measures total variability in the population. To see how FST,t relates to rt,
we use (S3) to write

Vart(K) = Vart(I1 + ...+ In) = nVart(I1) + n(n− 1) Covt(I1, I2)

= nVart(I1) + n(n− 1) rt Vart(I1) = nVart(I1) (1 + (n− 1)rt).

Since p̂ = K/n, we have Vart(p̂) = Vart(K)/n2, and we obtain

FST,t =
1 + (n− 1) rt

n
, or, equivalently, rt =

nFST,t − 1

n− 1
. (S4)

In particular, when n is large FST,t is close to rt.

Figure S14: This diagram illustrates the concept of identity by descent (IBD) in the 2lFW.
Two individuals X an Y in a given group in generation t, regardless of their type, are
identical by descent (IBD) if their lineages, when followed back in time, coalesce before a
migration event (indicated by a dashed arrow in the figure in the right panel). Considering
a migration rate of m, migration typically takes place within a random number, of order
1/m of generations back.

Identity by descent: The 2lFW allows for a very natural definition of “kin” and “genetical
identity by descent”, IBD for short (see Fig. S14). Say that two individuals in the same
generation are l-kin in case they share a common ancestor at most l generations in their
past. (The 1-kin of an individual are its siblings, its 2-kin are its siblings and cousins, etc.)
Because the number of groups g is large, individuals from different groups have negligible
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probability of being l-kin, unless l is comparable to g. As for individuals in the same group,
migration events in their lineages play a major role in their being or not kin. If, when we
follow their lineages back in time, we find a migration event in one of these lineages before
they coalesce, then we know that the probability that they will coalesce in a time that is
much shorter than g is negligible. With this in mind, say that two individuals in the same
generation are IBD in case following their lineages backwards in time, they coalesce before
(in the backwards sense) a migration event happens in either one. From the discussion
above, we know that being IBD in the 2lFW framework is essentially the same as being
l-kin for some l that may have to be large, but is not comparable to g.

We denote by D the event that the focal and the co-focal individuals are IBD, and
define genetic relatedness for the allele A by

Rt = IPt(D|A1).

Case of low prevalence: We suppose now that IPt(A1) = IPt(A2) = p(t) = p << 1.
Then, neglecting terms of order p, we have, from (S3), rt = IP (A2|A1).

To relate now rt to Rt, we proceed as follows. It is clear that IPt(A2|DA1) = 1. On the
other hand, if the event Dc happened, the type of the co-focal was sampled, independently
of the type of the focal, from the whole population in a generation t − s, when there was
a migration event in the lineage of the co-focal. Since migration occurs at fixed rate m, s
is of the order of the constant 1/m, and the frequency of types A in generation t − s was
of the same order of p. This implies that IPt(A2|A1D

c) is of order p, and hence, neglecting
again terms of order p, IPt(A2|A1) = IPt(A2|DA1) IPt(D|A1) + IPt(A2|DcA1) IPt(D

c|A1) =
1 · IPt(D|A1) = Rt. We have now, using also (S4),

Rt = IPt(A2|A1) = rt =
nFST,t − 1

n− 1
, when p(t) << 1. (S5)

Case of low prevalence in steady state: We suppose now the conditions of (A1): in
addition to p(t) << 1, also t >> 1. Then we have the steady state relation f(t) = Cρtν,
and (S5) and (S2) yield

Rt = IPt(A2|A1) =
n∑
k=1

IPt(A2|A1, K = k) IPt(K = k|A1)

=

∑n
k=1

k−1
n−1 k fk(t)∑n

k=1 k fk(t)
=

1

n− 1

∑n
k=1 (k − 1) k νk∑n

k=1 k νk
=: Rses, (S6)

when p(t) << 1 and t >> 1.

(The symbol =: means that a new notation is being defined on its right side. The meaning
of the subscript ‘ses’ will be explained in Section S9.)
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S4 Linear payoff function

Suppose that vAk = −C + B(k − 1)/(n − 1), as in the public goods game. Note that any
linear function of k can be written in this form. We will not make any assumption on vNk ,
or on the values of C and B. Combining the notation introduced in the derivation of (A1)
and that introduced in Section S3, we have WA = 1 + δIEt(v

A
K |A1). When p << 1 we have,

neglecting terms of order p, W̄ = WN = 1, and therefore

WA − W̄ = δ IEt(−C +B(K − 1)/(n− 1)|A1)

= δ IEt

(
−C + B

∑n
j=2 Ij

n− 1

∣∣∣∣∣A1

)
= δ

(
−C +B

∑n
j=2 IEt(Ij|A1)

n− 1

)
= δ (−C +BIPt(A2|A1)) = δ (−C +BRt),

where we used (S5). Hence, using W̄∆p = p(WA − W̄ ), and neglecting terms of order p2,
we have

∆p = p δ (−C +BRt),

in this case. Note that here we did not need the assumption that t >> 1, but the relatedness
Rt is time-dependent, even if selection is weak. If we now also assume t >> 1, then, from
(S6),

∆p = p δ (−C +BRses). (S7)

S5 Limit of weak selection.

IBD distribution π as a needed extension of relat-

edness

Separation of time scales: In this section, we will denote by Bin(N, q) a random vari-
able with binomial distribution, corresponding to N independent attempts, each one with
probability q of success. When δ = 0, we have wAk = wNk = w̄k = 1, for all values of k.
The 2lFW evolves in this case by neutral genetic drift (A is a neutral marker). In this case
when p << 1, we have f(t+ 1) = f(t)M0(A+B), where (M0)k,i = IP (Bin(n, k/n) = i).
This yields, after some simplifications,(

M0(A+B)
)
k,j

=

{
IP (Bin(n, (1−m)k/n) = j) + mk, if j = 1,
IP (Bin(n, (1−m)k/n) = j), if j = 2, ..., n.

(S8)

When 0 < p(0) << 1 and t >> 1, we have from the Perron-Frobenius theorem, as in the
paper and in Section S2, f(t) = C(ρ0)tν0, where C > 0 depends on f(0), ρ0 is the Perron-
Frobenius eigenvalue of M0(A + B) and ν0 its corresponding left-eigenvector, normalized
as a probability vector. But when δ = 0, A and N have the same relative fitness, so the
expected frequency of A cannot change. This means that p(t) =

∑n
k=1(k/n)fk(t) must be

a constant, and hence we must have ρ0 = 1.
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Figure S15: Perron-Frobenius eigenvectors ν = νδ for selection strengths δ = 0.01 (left
column), δ = 0.3 (middle column) and δ = 0.7 (right column). Migration rate is set to
m = 0.1 and group sizes to n = 20. Each line represents a different model. The top row,
labeled as PG depicts the Public Goods game (Example 1) with parameters C = 1 and
B = 2. The Iterated Public Goods game (Example 2) with parameters C = 1, B = 4,
a = 4 and T = 10 is shown in row at the middle, labeled as IPG. The bottom row shows
Perron-Frobenius eigenvectors for the Threshold model (THR, Example 3) with C = 1,
A = A′ = 5 and θ = 4. The leftmost column emphasizes that the weak selection limit ν0k is
independent of the model. In contrast, when selection is strong, νδ depends on the model,
as illustrated in the other columns.
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Figure S16: Distribution πk (bars) given by π = πQ and
∑n

k=1 πk = 1, compared with
kνδk/

∑
k′ k
′νδk′ . Here νδ is the Perron-Frobenius eigenvector of M(A + B), with δ = 0.01,

for the Threshold model (THR, Example 3) with parameters n = 20, C = 1, A = A′ = 5
and θ = 4 (red diamonds). The comparison is repeated for migration rates m = 0.01 (top
panel) and m = 0.1 (bottom panel).

We want to think of the case of weak selection, i.e., 0 < δ << 1, as a perturbation
of the case with δ = 0. We consider for this purpose the limit δ → 0. By continuity of
eigenvalues and eigenvectors, we have then ρ → 1 and ν → ν0. Note that, since ν0 does
not depend on vAk and vNk , the dependence of ν on these payoff functions should vanish as
δ → 0 (see Fig. S15, for an illustration).

This is the well known separation of time scales that occurs under weak selection (see,
e.g., [14], [11]). Most of the time in most places evolution is occurring as if δ were 0, i.e.,
via neutral genetic drift. Only occasionally events happen that are caused by the slight
differences in fitness of the individuals. Quantitatively, demographics operates even when
δ = 0, in times of order 1/m, while selection operates in times of order 1/δ.

When 0 < δ << 1, the right hand side of (A1) can be well approximated by δ
∑n

k=1 kν
0
kv

A
k∑n

k=1 kν
0
k

.
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The error term in this approximation is of order δ2, since the error in replacing ν with ν0

is of order δ. Define now πk = kν0k/
∑n

i=1 iν
0
i . Then (A1) yields, in good approximation,

∆p = pδ
∑n

k=1 πkv
A
k . The quickest way to see that π is the invariant distribution of the

Markov chain driven by Q, as introduced in (A2), is as follows. Note that from (S8)
and the definition of Q, we have j(M0(A + B))k,j = kQk,j. Therefore, the eigenvalue
equation ν0M0(A + B) = ν0 is equivalent to the equation πQ = π. (See Fig. S16 for
an illustration.) This completes the proof of the claims pertaining to (A2) in the paper.
But the last argument above hides the reasons for these results, and were not our original
arguments. In the next subsection a less formal but more intuitive line of argumentation
will be presented.

The Markov chain driven by Q can be described as follows. If at time t it is in state
Xt ∈ {1, ..., n}, then at time t + 1 it will take the value Xt+1 = 1 with probability m, or
the value Xt+1 = 1 + Bin(n − 1, (1 − m)Xt/n) with probability 1 − m. We will explain
next how this relates to IBD and how it makes the relationship between ν and this Markov
chain intuitive.

Markov chain driven by Q and IBD: From this point on, in this section, we suppose
that δ = 0, except when stated otherwise. As before, suppose that a focal group is chosen
at random in generation t, and that a focal individual from this group is then also chosen
at random. Define KD as the random variable that gives the number of individuals in the
focal group that are IBD to the focal individual, herself included in the counting. Then we
claim that KD evolves from generation to generation as a Markov chain driven by Q. To
see this (see Fig. S17), note that if the focal is a migrant, then she is only IBD to herself
in her group, while if she is not a migrant, then she is IBD to herself and to each one of
the other members of her group that are not migrants and that have a mother who is IBD
to her mother. Since the assignment of mothers is given by the intragroup Fisher-Wright
process (with no selection, since δ = 0), we have for KD the same probabilistic evolution
as for the chain Xt above.

We want to understand now, on intuitive grounds, why ν0 relates to the invariant
distribution of the Markov chain driven by Q in the way we found computationally in
the previous subsection. Suppose that 0 < p(0) << 1 and t >> 1, so that f(t) = Cν0.
Suppose that at time t we choose a random focal group and from that group a random focal
individual. We condition now on the event A1, that the focal individual is type A. Because
p(t) = p(0) << 1, it is very likely then that the number of types A in the focal group is
K = KD, since individuals in the focal group who are not IBD to the focal individual have
only probability p of being type A, while those who are IBD to the focal must be type A.
Because we are under neutral drift, with δ = 0, conditioning on A1 does not affect lineages.
This means that

IPt(K = k|A1) = IPt(K
D = k|A1) = IPt(K

D = k).

By Bayesian bias in sampling, the left-hand side is kfk(t))/(
∑n

i=1 ifi(t))
= kν0k/(

∑n
i=1 iν

0
i ) = πk, where the first equality is a good approximation when 0 < p(0) <<
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1 and t >> 1 and the second equality is the definition of π. On the other hand, since t >> 1,
the right-hand-side is close to the invariant distribution of the Markov chain driven by Q,
as we saw in the previous paragraph. This shows that π is that invariant distribution.

Figure S17: This diagram illustrates why KD evolves as a Markov chain driven by Q. In
this picture KD

u represents the number of individuals that are IBD to the focal individual
Fu, in generation u (red circle). Two scenarios are discernible. MC1 (left panel): the focal
individual is a migrant. This happens with probability m and implies that KD

u = 1. MC2
(right panel): the focal individual Fu is not a migrant, and she is a child of Fu−1. Each
individual in the focal group in generation u choses a mother from the group of Fu−1 in
the previous generation with uniform probability, as δ = 0. With probability KD

u−1/n the
chosen mother is IBD to Fu−1 (orange circles) and, consequently, her children are also IBD
to Fu, provided that they are not migrants. In this case, the number of individuals in
generation u that are IBD to the focal is, therefore, 1 (for the focal individual herself) plus
a number of individuals given by a binomial random variable with probability of success
(1−m)KD

u−1/n in n− 1 trials.

Moments of π: The Markov chain introduced above can be used to write recursions for
quantities of interest. For instance, this method can be used for computing the moments
of the distribution π, Ml =

∑
k k

lπk, l = 1, 2, ....
To express the lth moment, Ml, in terms of Mj, j = 1, 2, ..., l − 1, we will use the

following fact. If Y has a Bin(N, q) distribution, then

IE(Y l) =
l∑

j=1

S(l, j)Nj q
j,
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where Nj = N(N − 1) · · · (N − j + 1), and the Stirling number of the second kind, S(l, j),
is the number of ways in which a set with l elements can be partitioned into j non-empty
sets. Clearly S(l, 1) = S(l, l) = 1, for all l. They are also known to satisfy

S(l, j) =
1

j!

j∑
i=0

(
j
i

)
(j − i)l.

The first few values of S(l, j) are: S(1, 1) = 1;S(2, 1) = 1, S(2, 2) = 1;S(3, 1) = 1, S(3, 2) =
3, S(3, 3) = 1;S(4, 1) = 1, S(4, 2) = 7, S(4, 3) = 6, S(4, 4) = 1;S(5, 1) = 1, S(5, 2) =
15, S(5, 3) = 25, S(5, 4) = 10, S(5, 5) = 1; ...

For our purpose, it is convenient to write s = 1 − m, and to consider the stationary
Markov chain, i.e., the case in which IP (X0 = k) = πk, so that also IP (X1 = k) = πk. Look
now at the random variable (X1 − 1)l. With probability m it takes the value 0, and with
probability s it takes the value (Bin(n− 1, sX0/n))l. Therefore

IE((X1 − 1)l) = s

l∑
j=1

S(l, j) (n− 1)j s
jIE(X0)

j/nj.

But since X0 and X1 both have distribution π, we obtain

l∑
j=0

(
l
j

)
(−1)l−jMj =

l∑
j=1

S(l, j)
(n− 1)j
nj

sj+1Mj.

This provides us with the aimed recursion:

Ml =

(−1)l+1 +
∑l−1

j=1

{
(−1)l−j+1

(
l
j

)
+ S(l, j)

(n−1)j
nj sj+1

}
Mj

1 − (n−1)l
nl sl+1

. (S9)

For l = 1, (S9) reduces to

M1 =
n

n− (n− 1)(1−m)2
. (S10)

Relatedness: The mean M1 of π is directly related to the relatedness in groups under
δ = 0, and demographic equilibrium (t >> 1), that we will denote by R0. First we observe
that when δ = 0, conditioning on the focal being type A does not change the demographic
distribution, hence R0 = limt→∞ IPt(D|A1) = limt→∞ IPt(D), where, as before D is the
event that the focal and the co-focal individuals are IBD. Recall the enumeration of the
members of the focal group, in which the first individual is the focal. Now decompose
KD − 1 = ID2 + ... + IDn , where, IDj = 1, if the jth individual in this ordering is IBD
to the focal, and IDj = 0, otherwise. This yields IEt(K

D − 1) = IEt(I
D
2 ) + ... + IEt(I

D
n ) =
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Figure S18: Relatedness R0 as a function of migration rate m, under neutral drift, δ = 0,
as given by (S11). From top to bottom, n = 20 (dot-dashed blue line), n = 50 (dashed
green line) and n = 100 (full red line).

(n−1)IPt(D), and therefore IPt(D) = (IEt(K
D)−1)/(n−1). Putting these pieces together

yields

R0 = lim
t→∞

IPt(D) = lim
t→∞

IEt(K
D)− 1

n− 1
=
M1 − 1

n− 1
=

(1−m)2

n− (n− 1)(1−m)2
. (S11)

(See Fig. S18.) When m is small, (S11) yields the approximation

R0 ≈ 1

1 + 2nm
. (S12)

This is a well known result by Wright for the infinite islands model, for haploid individuals.
It is important to clarify that even when δ = 0, our 2lFK framework is not identical to
the infinite islands model. In that model there are a large number g (to be taken to ∞
in the computations) of islands, each one with n individuals. In generation t + 1 the n
individuals in each island choose, independently, a parent from the individuals in the same
island in generation t. This is followed by migration at rate m, that is implemented in
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exactly the same way as in the 2lFW framework. In contrast with what happens in 2lFW,
each island is “parent” to exactly one island in the next generation. In 2lFW, when δ = 0,
each group is parent to a random number, with distribution Bin(g, 1/g), of groups. In spite
of this difference, it is not simply a coincidence that lead to the same formula (S11) in both
frameworks. They share the same coalescence structure, when we ask ourselves questions
related to IBD. Not only is R0 identical in these frameworks, but so is also the distribution
π. Indeed, when we follow lineages backwards in time, until there are migration events,
it does not matter if the group that we are following from generation to generation is the
same (as in the infinite islands case) or changes (as in our 2lFW case).

For arbitrary payoff functions, vAk and vNk , we have, from (S6),

lim
δ→0

Rses = limδ→0
1

n−1

∑n
k=1 (k−1) k νk∑n

k=1 k νk
= 1

n−1

∑n
k=1 (k−1) k ν0k∑n

k=1 k ν
0
k

= 1
n−1

∑n
k=1 (k − 1) πk = M1−1

n−1 = R0. (S13)

Mnemonic recursions: There is a well known (in the infinite island case, but the same
applies to 2lFW) and simpler way to derive (S11). If a focal and a co-focal individuals
are chosen from the same focal group in generation t >> 1, then the probability R0 that
they are IBD can be calculated as follows. For them to be IBD neither can be a migrant
(probability (1−m)2). Given that they are not migrants, they will be IBD if they have the
same mother (probability 1/n), or if they have distinct mothers and their mother are IBD
(probability (1 − 1/n)R0, using the fact that t >> 1 implies demographic equilibrium).
Combining these, we have

R0 = (1−m)2((1/n) + (1− 1/n))R0, (S14)

which yields (S11).
The very same kind of powerful reasoning can be used to obtain the recursions for

π1, ..., πk that are summarized in the equation πQ = π. This is done in the second derivation
of (A2) in the paper, and reproduced next, so that its parallel with the derivation of (S14)
becomes apparent. For this we will use the standard Kronecker notation δi,j = 1 if i = j
and δi,j = 0 if i 6= j. Now, the probability πk that the focal is IBD to exactly k − 1
other members of her group is δk,1 if the focal is a migrant (probability m), while if she
is not a migrant (probability 1 − m), then we have to consider how many individuals in
her mother’s group were IBD to her mother. If, counting her mother, that number was j
(probability πj, assuming demographic equilibrium) then the probability that the focal is
IBD to exactly k−1 other members of her group is equal to the probability that of the n−1
other members of the focal’s group, exactly k − 1 chose one of the j candidates to mother
that were IBD to the focal’s mother, and moreover did not become a migrant (probability
IP (Bin(n− 1, (1−m)j/n) = k − 1)). Combining these pieces, we have

πk = mδk,1 + (1−m)
n∑
j=1

πj IP (Bin(n− 1, (1−m)j/n) = k − 1). (S15)
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This is exactly the same as the set of equations πQ = π. And Fig. S17 is a diagram of that
reasoning.

When is π needed over R0? Precisely when vAk is not a linear function of k. Suppose
that vAk = −c+ b1k+ b2k

2 + · · ·+ blk
l. Then the weak selection viability condition derived

from ∆p > 0 in (A2) becomes

c < b1M1 + b2M2 + · · ·+ blMl, (S16)

involving moments of π. In the linear case l = 1, this condition becomes c < b1(1 + (n −
1)R0), that only depends on R0. If in this case we write vAk = −C + B(k − 1)/(n − 1),
corresponding to c = C + B/(n − 1) and b1 = B/(n − 1), then this viability condition
takes the familiar form C < BR0. This is the same that one obtains from combining (S7)
with (S13). In the next section we will study the limit (S18), under which (S16) simplifies
considerably, becoming equivalent to the condition ∆(p) = 0 in (A4).

Another good illustration of the need to use π rather than R0 is given by the threshold
model, Example 3. In this case the viability condition derived from ∆p > 0 in (A2) becomes

C < A
n∑
k=θ

πk. (S17)

In this case, the relevant information contained in π, rather than being in R0 or in higher
moments, is in the tail of that distribution. The results from the next section will lead to
a major simplification to (S17), in the limit (S18), assuming that θ/n converges to some θ̃,
so that the conditions of (A3) are satisfied. (See second subsection of Section S7.)

S6 Limit of large n and small m under weak selection.

IBD distribution is close to beta distribution

Convergence of π to beta distribution: In this section we will continue to assume that
selection is weak and we will study the limit in which

n→∞, m→ 0 and nm→ m̃, so that R0 → 1/(1 + 2m̃) = R̃0, (S18)

where we used (S11), (S12). We will suppose that 0 < m̃ <∞. Suppose also that KD is a
random variable with distribution π, i.e., IP (KD = k) = πk. Then we will show that

IP (KD/n > x) →
∫ 1

x

fm̃(x′)dx′ = (1− x)2m̃, (S19)

for arbitrary 0 ≤ x ≤ 1. This means that KD/n converges in distribution to a beta
distribution with parameters α = 1 and β = 2m̃, which has density fm̃(x) = 2m̃ (1 −
x)2m̃−1, 0 < x < 1. (See Fig. S19 for illustrations.)
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Figure S19: Limit of large n and small m under weak selection. This figure compares
tail probabilities for the distribution π (stairs) and for Beta distributions with parameters
α = 1 and β = 2mn. Panel A shows the case n = 20 for, from top to bottom, m = 0.01
(red dotted line), m = 0.1 (blue dashed line) and m = 0.5 (black dot dashed line). Panel
B depicts the same scenarios for the case n = 100.

To prove (S19), it is sufficient to show that the moments of KD/n converge to those of
the beta distribution (see, e.g., Section 2.3.e of [4]), namely that for l = 1, 2, ...,

Ml

nl
−→ l!

(2m̃+ 1)(2m̃+ 2) · · · (2m̃+ l)
= M̃l. (S20)

We will prove (S20) by induction in l = 1, 2, .... First, from (S10) we obtain it in case l = 1.
Now suppose that (S20) is true for l = 1, 2, ..., i−1. ThenMl/n

i−1 → 0, for l = 1, ..., i−2,
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so that from (S9) we obtain

lim
Mi

ni
= lim

{(
i

i− 1

)
+ S(i, i− 1) (n−1)i−1

ni−1 si
}
Mi−1

ni−1

n
(

1 − (n−1)i
ni si+1

) .

But (
i

i− 1

)
+ S(i, i− 1)

(n− 1)i−1
ni−1

si =

(
i

i− 1

)
+

(
i
2

)
(n− 1)i−1
ni−1

si

−→ i +
i (i− 1)

2
=

i (i+ 1)

2
.

And

1 − (n− 1)i
ni

si+1 = 1 −
(

1− 1

n

) (
1− 2

n

)
...

(
1− i

n

)
(1 − m)i+1

=
1 + 2 + ...+ i

n
+ (i+ 1)m + ∆(n,m)

=
i (i+ 1)

2n
+ (i+ 1)m + ∆(n,m),

where ∆(n,m)n → 0. The last three displays, and the induction hypothesis, imply that

lim
Mi

ni
=

i (i+1)
2
M̃i−1

i (i+1)
2

+ (i+ 1) m̃
=

i

i+ 2m̃
M̃i−1 = M̃i.

This proves that (S20) is true for l = i, completing the induction argument, and the proof
of (S19).

Application: Suppose that there is a piecewise continuous and bounded function ṽAx ,
0 ≤ x ≤ 1, such that

max
k=1,...,n

∣∣vAk − ṽAk/n∣∣ −→ 0, as n→∞. (S21)

Then, the weak convergence result in (S19) above, combined with the continuous mapping
theorem, (2.3) in Section 2.2.b of [4], implies that, when 0 < m̃ <∞,

n∑
k=1

vAk πk −→
∫ 1

0

ṽAx fm̃(x) dx = 2m̃

∫ 1

0

ṽAx (1− x)2m̃−1 dx, (S22)

in the limit (S18). This proves that (A3) follows from (A2) in this limit.
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S7 Critical values

Definitions: When ρ > 1 we are in the regime in which the fixed point (0, ..., 0) of the
dynamical system f(t) is unstable (the allele A can invade), while, when ρ < 1, this fixed
point is stable (the allele A cannot invade). (The boundary case ρ = 1 could fall in either
category, depending on the model.) It is natural to define the critical value

ms = max {m ∈ [0, 1] : ρ ≥ 1}. (S23)

(The subscript ‘s’ stands for ‘survival’ of the allele A, when rare.) Typically (see Fig. S2),
we found that ρ(m) is a monotone decreasing function of m, and

ρ(ms) = 1 (S24)

has a single solution. In this case (S24) is equivalent to (S23), and the allele A can invade
when m < ms and cannot invade when m > ms.

Conditions (C1) and (C2) from Section S1 imply that 0 < ms < 1, as we show next.
For this purpose, we use continuity of eigenvalues and eigenvectors. In particular ρ(m) is
continuous, and it is enough to observe how it behaves as m approaches 0 or 1. When
m = 1, the matrix A = 0, and M(A+ B) = MB has only the first column not identically
0. Therefore any of its left-eigenvectors must be of the form (a, 0, ..., 0). When such a
vector is multiplied by MB, the result is wA1 (a, 0, ..., 0). This shows that wA1 is the only
eigenvalue of M(A + B). Therefore ρ(m) must converge to wA1 < 1 (by (C1)), as m → 1.
When m = 0, M(A + B) = M has the eigenvalue wAn > 1 (by (C2)), corresponding to
the left-eigenvector (0, 0, ..., 0, 1). This implies that ρ(m) must be larger than 1 when m is
close to 0.

The parameter 1 −m indicates the level of assortment in the 2lFW. Another natural
parameter for this purpose, that is also in one-to-one correspondence with m, is R0(m),
given by (S11) (see Fig. S18). It provides the relatedness measured using neutral genetic
markers, in the same demographics in equilibrium, by means of regression coefficients,
Wright’s FST , or lineages (IBD). This leads to the following natural definition:

R0
s = R0(ms) =

(1−ms)
2

n− (n− 1)(1−ms)2
.

When the allele A is under weak selection, so that ms solves ∆p = 0 in (A2), then R0
s

gives the critical value of relatedness also if measured for the allele A itself, in demographic
equilibrium. But this is not the case if A is under strong selection. Even then, R0

s is a
meaningful way to describe the critical value of assortment needed for A to be able to
invade the population, as, for instance, in Panel B of Fig. 2 in the paper.

If the allele A is under weak selection, n is large, and we have in good approximation
(in the sense of (S21)) vAk = ṽAk/n, for some piecewise continuous and bounded function

ṽAx , 0 ≤ x ≤ 1, then ms solves ∆p = 0 in (A3). It is then natural to define

m̃s = lim
n→∞

nms, and R̃0
s = lim

n→∞
R0
s =

1

1 + 2m̃s

.
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R̃0
s gives the critical level of relatedness in the population, measured with the allele A itself

or with neutral genetic markers, that allows the allele A to invade in this case. The critical
migration rate is then close to m̃s/n.

Threshold model with large n: A simple example of the use of (A3) is given by the

threshold model, Example 3. Suppose that θ = dn θ̃ e, for some 0 ≤ θ̃ ≤ 1, where dye is
the smallest integer larger than or equal to y. In this case, vAk = ṽAk/n, with ṽAx = −C, for

0 ≤ x < θ̃, and ṽAx = −C + A, for θ̃ ≤ x ≤ 1. We can now apply (A3), when A is under
weak selection, and n is large. The equation ∆p = 0 can be easily integrated in this case,
giving C = A(1− θ̃)2m̃s , which yields

m̃s =
log(C/A)

2 log(1− θ̃)
, or, equivalently, R̃0

s =
1

1 + log(C/A)

log(1−θ̃)

, (S25)

where log can be in any base. If θ̃ is small, then we have the further approximations

m̃s =
ln(A/C)

2 θ̃
, or, equivalently, R̃0

s =
1

1 + ln(A/C)

θ̃

. (S26)

Fig. S20 illustrates the quality of these approximations to ms and R0
s, with n = 20 and

n = 100.
In the next section a similar analysis will be carried out for the IPG (Compare Fig. S20

to Fig. S21.)
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Figure S20: Limit of large n under weak selection for the threshold model (THR, Example
3). Panels represent critical migration rates (A and C) and critical relatedness (B and D)

for the THR with C = 1, A = A′ = 10 as a function of θ̃ = θ/n. Top panels A and B depict
the case n = 20. Bottom panels C and D depict the case n = 100. In each panel critical
values obtained by the viability condition under weak selection derived from (A2) (black
full lines) are compared with the approximation for large n given by (S25) (ms = m̃s/n,

R0
s = R̃0

s, approx.1, dashed blue lines) and with the approximation (S26) (approx.2, dotted
red lines).
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S8 Iterated public goods game.

Types A play multi-individual tit-for-tat

In this section we will analyse in detail the iterated public goods game (IPG, Exemple
2), introduced in Fig. 2 of the paper and in Section S1. This model was studied inde-
pendently in [3] and in [9], in the trait-group framework. Both papers identified stable
equilibria with positive fractions of types A. But they also observed that altruists could
not invade when rare. In [3] an approach was then introduced to provide assortment and
allow the allele A to invade when rare. The authors concluded that such invasion by allele
A could only occur under very restrictive conditions, and that therefore this model and
the corresponding notion of multi-individual tit-for-tat were of marginal relevance. One of
our contributions in the current paper is to rectify this perception. We show here that in
the 2lFW framework, the allele A can invade under very reasonable conditions. Therefore
we propose that conditional mechanisms of cooperation be seriously considered. Later in
this section, we will explain why the estimates in [3] contained an unreasonably pessimistic
assumption, that is not supported in the 2lFW.

Suppose that a = bn ãc, for some 0 ≤ ã = α ≤ 1 (the notation α in the paper is
being changed to ã in this section, to make it more similar to other quantities related to
the limit studied in Section S6; byc is the largest integer smaller than or equal to y, i.e.,
the integer part of y). Then, when n is large, we have in good approximation (in the sense
of (S21)) vAk = ṽAk/n, where ṽAx = −C + Bx, for 0 ≤ x ≤ ã, and ṽAx = T (−C + Bx), for
ã < x ≤ 1. In case selection is weak and n is large the viability condition is obtained from
setting ∆p > 0 in (A3). Integration of the right-hand-side of (A3) gives then the following

equation for the critical level of relatedness R̃0
s = R.

C − BR = (T − 1)

{
BR +

Bã− C
1− ã

}
(1− ã)1/R, (S27)

except in the trivial case ã = 1, in which the right hand side of (S27) is 0. This case
corresponds to a = ã n = n, so that types A cooperate only in the first round. Obviously
then, the game reduces to the one-shot public goods game, and indeed, (S27) reduces to
the usual condition C = BR.

In the opposite extreme, when ã = 0, so that a = ã n = 0 and types A cooperate in
each round of the game, the right hand side of (S27) reduces to (T −1) (C−BR). So (S27)
is again reduced to C = BR, as one should expect.

Note that, obviously, also when T = 1, the game is a one-shot public goods game and
(S27) reduces once more to C = BR. One can see the right hand side of (S27), as a
correction to that viability condition in the more general and challenging example that we
are analyzing here.

Analysis of (S27). Results: While somewhat intimidating at first sight, (S27) provides

good information about the critical value R = R̃0
s, that solves it. We first state the main

features of its behavior, and then explain in the next subsection how to do the computations

35



leading to these claims. Of special biological and mathematical importance is the case in
which ã = C/B = min{0 ≤ x ≤ 1 : ṽAx ≥ 0}. In this case, in which types A are payoff
dependent conditional cooperators, (S27) simplifies to:

C − BR = (T − 1)BR (1− C/B)1/R. (S28)

We will see that with C, B and T fixed, R̃0
s is a continuous function of 0 ≤ ã ≤ 1, that takes

the value C/B on both end-points of this domain, is strictly decreasing when 0 ≤ ã ≤ C/B,
and strictly increasing on C/B ≤ ã ≤ 1. It reaches therefore its minimum at ã = C/B,

where it solves (S28). It is intuitive that R̃0
s should reach its minimal value when ã = C/B,

since then altruists are persisting precisely when it is in their benefit to do so. Fig. S21
compares the solution of (S27), as a function of ã, with values of R0

s obtained from (A2),
for n = 20 and n = 100. Note the features described above present in this pictures.

With T and ã fixed, R̃0
s is a decreasing function of B/C, that goes to 0 as B/C → ∞

(see Fig. S22). With C, B and 0 < ã < 1 fixed, R̃0
s is a decreasing function of T that

behaves as follows when T →∞. If 0 ≤ ã < C/B, then R̃0
s → (C − Bã)/(B − Bã), while

if C/B ≤ ã ≤ 1, then R̃0
s → 0. In this latter case, the convergence is rather slow, in that

R̃0
s behaves asymptotically as (log(1/(1− ã)))/ log(T ). (See Fig. S23.)

Analysis of (S27). Computations: The claims above follow from the behavior of
the left hand side and the right hand side of (S27). We denote them respectively by
H(R) = HC,B(R) and G(R) = GC,B,T,ã(R). (With G(0) = 0, so that G is continuous on
the interval [0, 1]. Note that not only G(R), but also all its derivatives converge to 0 as
R → 0.) See Fig. S24, for an illustration of what follows. The function H(R) is very
straightforward; it is a strictly decreasing function of R, that is positive for R < C/B
and negative for R > C/B. The function G(R) has the sign of the term inside the curly
braces. That term inside the curly braces is 0 when R = (C − Bã)/(B − Bã). We define

R̂ = max{(C − Bã)/(B − Bã), 0}, and observe that 0 < R̂ < C/B, when ã < C/B, and

R̂ = 0, when ã ≥ C/B. The term inside the curly braces, and therefore also G(R), is

negative for R < R̂, and positive for R > R̂. Notice also that once it is positive, G(R) is
strictly increasing in R, since it is then the product of strictly increasing positive functions.
The behaviors described so far for H(R) and G(R) immediately imply that they are equal

to each other at exactly one point R = R̃0
s, and that this point is in the open interval

(R̂, C/B).

The various claims about the behavior of R̃0
s as a function of ã, or of B/C, or of T , follow

now from analyzing the behavior of the graphs of H(R) and of G(R), as these parameters
change. We have ∂GC,B,T,ã(R)/∂ã = (T − 1) (C − Bã) ((1/R) − 1) (1 − ã)(1/R)−2, which,
regardless of the value of R, is positive for 0 < ã < C/B and negative for C/B < ã < 1.
This means that the graph of G(R) moves upwards, as ã increases from 0 to C/B, and then
moves downwards, as ã increases from C/B to 1. In the extremes, G(R)→ (T−1)(BR−C),
as ã → 0, for all R > 0. (This convergence is not uniform, since the function G(R)
converges to 0 as R→ 0.) And G(R)→ 0, uniformly in R, as ã→ 1. These facts, and the
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trivial behavior of H(R) that does not depend on ã, provides us with the facts about the

dependence of R̃0
s on ã.

The fact that R̃0
s depends on C and B only through B/C can be seen by dividing

both sides of (S27) by C. The fact that R̃0
s decreases as B/C increases follows easily

from observing that the graphs of H(R) and G(R) move, respectively, down and up, as

B increases, with C fixed. And the fact that R̃0
s → 0, as B/C → ∞, is immediate from

0 < R̃0
s < C/B (Fig. S22).

If we keep B, C and 0 < ã < 1 fixed and let T ↗∞, then G(R) also goes monotonically

to ∞, for R̂ < R < C/B, and stays at 0 for R = R̂. The corresponding behavior of the

graph of G(R), and the fact that R̃0
s is the point in R̂ < R < C/B where this graph

intersects the graph of the decreasing function H(R), shows that, as claimed above, R̃0
s is

decreasing in T , and as T → ∞, R̃0
s → R̂ (Fig. S25). The claim about the slow speed of

this convergence, in case C/B ≤ ã < 1, can be obtained by taking the logarithm of both
sides of (S27) and analyzing how the resulting terms behave as T →∞.

Analysis of (S28): For each value of T , this equation is a relationship between the values
of C/B and R, since it can be written as C/B − R = (T − 1)R (1− (C/B))1/R. Fig. S26
shows how this relationship looks like. For T = 1 we have R = C/B, and as T increases,
R decreases towards 0, for each value of 0 < C/B < 1. To obtain an approximation for R,
when T is large, we observe that, if we define ϕ = C/BR, then (S28) can be written

ϕ− 1 = (T − 1)
[
(1− C/B)B/c

]ϕ
. (S29)

Taking logarithms (arbitrary base) from both sides, we get

log(ϕ− 1)

ϕ
=

log(T − 1)

ϕ
+

B

C
log

(
1− B

C

)
. (S30)

Suppose 0 < C/B < 1 fixed, and let T → ∞. Then (S29) implies that ϕ → ∞, since
otherwise the right-hand-side would go to∞, while the left-hand-side would not. But since
ϕ→∞, the left-hand-side of (S30) goes to 0, and hence

log(T − 1)

ϕ
→ − B

C
log

(
1− B

C

)
, or, equivalently, R log T → − log

(
1− B

C

)
.

This provides us with the approximation (A5), when T is large.

A note on the assumptions in [3], and some intuition on our results: It is im-
portant to explain why the assumptions made in [3] on how much assortment to expect
in groups, and later used in several papers, including [2], are excessively pessimistic. In
[3] it was supposed that conditioned on the focal individual being type A, the other n− 1
members of the focal group would be type A independently, with probability IPt(A2|A1). In
the 2lFW, conditioned on the focal being type A, if we also condition on the co-focal being
type A further increases the conditional probability that a third member of the group is
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type A. Conditioning then on a third individual being type A, again further increases the
probability that a fourth individual is type A, and so on. This is so because the information
being successively provided keeps increasing the probability that there were several types
A in the previous generation in the group from which the focal descends.

It is very interesting to make the computation of R̃0
s using the assumption of [3] and

compare the result with what we have obtained from (S27). Under that assumption of
conditional independence, the viability condition for the regime of weak selection would
become

∑n
k=1 v

A
k bin(k − 1|n − 1, R0) > 0. Define now ṽA∗x as ṽAx , when x is a continuity

point of ṽAx , and as the average between the limits of ṽAx from the left and from the right at
x, at the possible discontinuity point. Then, by a central limit theorem, in the limit (S18),∑

k

vAk bin(k − 1|n− 1, R0) −→ ṽA∗
R̃0 .

We would then have ṽA∗
R̃0

s
= 0. The only solution of this equation is R̃0

s = C/B, regardless

of the value of ã. This result would not depend on T , and would differ substantially from
our result in case, e.g., ã = C/B, T large, for which (A5) holds.

To understand the reason for those substantially different results for the IPG in the
2lFW framework and in the ad hoc conditional independence scenario of [3], we observe the
following. In the 2lFW, when δ = 0, n is large and m is small, the fraction of individuals
in the focal group who are IBD to the focal individual is well approximated by a beta
distribution with mean R and standard deviation R

√
2/(R + 1). In contrast, under the

assumption of [3] that fraction is well approximated by a normal distribution with mean
R and standard deviation

√
R(1−R)/n. So, in the 2lFW framework, the distribution has

a spread that is independent of n and is comparable and even larger than its mean and
has a heavy tail. (See (S19) and Fig. S19. For instance, in this figure, when m = 0.1,
we have R0 = 0.2 in panel A and R0 = 0.04 in panel B. But see how much probability
the beta distribution allows for substantially larger values of k/n). In the scenario of [3],
when n is large, the distribution is narrowly concetrated around the same mean, with a
light Gaussian tail. The conditionality of behavior in IPG makes the fitness function vAk
grow fast when k is large (see Fig. S1) and gives a fundamental role to the tail of that
distribution, explaining the discrepancy.

This comparison with [3] highlights some fundamental facts about assortment of genes
under weak selection in 2lFW and also in Wright’s infinite island model, since both have
the same coalescent. The number KD − 1 of individuals in a focal group that are IBD to
and distinct from a focal individual in this group is a random variable that does correspond
to n − 1 attempts, each with probability R0 of success. But, contrary to the assumption
in [3], these n− 1 attempts are highly dependent, so that we do not get a good Gaussian
(central limit theorem) approximation, but rather a good beta distribution approximation,
with a fatter tail. The observation of this lack of normality and the identification of the
appropriate approximate distribution as a beta are central contributions of the current
work, with powerful computational and conceptual implications.
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When are types A altruistic in the IPG? There is more than one way in which the
concept of altruism in the context of the trait-group framework has been defined [10]. These
different definitions carry over to the 2lFW. A particularly simple concept is called in [10]
the “multilevel interpretation” of altruism. That definition requires the two conditions
wAk < wNk , for all k, and w̄k increasing in k. The first one means that types A are always
worse off than types N in the same group, and the second one means that the more types
A in a group, the better for the group. Both conditions are clearly always satisfied in the
IPG, that has w̄k = (B − C)k/n, if k ≤ a and w̄k = T (B − C)k/n, if k > a.

There are nevertheless good arguments for considering other definitions of altruism
[10]. A particularly appealing definition is called “focal-complement interpretation” in
[10], and is often known as “mutation condition”. Suppose that a type N mutated into a
type A, everything else remaining unchanged. Would this cause a decrease in the fitness
of the mutant? Would it cause an increase in the average fitness of the other members
of the mutant’s group? Since the average fitness of the n members of the mutant’s group
increases with the mutation, the answer to the second question will be affirmative whenever
the answer to the first question is affirmative. Therefore the condition for types A to be
altruistic is that

vAk+1 − vNk < 0, (S31)

for all k. The l.h.s. of (S31) takes the values: vAk+1 − vNk = −C < 0, if k ≤ a − 1;
vAk+1 − vNk = −CT < 0, if k > a; and vAa+1 − vNa = .T (−C + aB/(n− 1))− aB/(n− 1), if
k = a. Therefore, only the case k = a needs to be analyzed. When T = 1 and the IPG is
identical to the PG, (S31) holds. For arbitrary values of T , the same is true for a = 0 (again,
the IPG is identical to a PG, in this case with values of C and B multiplied both by T ).
For each value of T and n, (S31) holds for values of a that are small and may start failing
at some critical value of a. In case T is large, that critical value of a is close to (n−1)C/B,
that, when n is also large, corresponds to α = C/B. The intuition for this critical value of
a is as follows. When k 6= a, it is always costly for a type N to mutate into a type A, since
that mutation will not change the number of times other types A in the group cooperate,
and will cost to the mutant a net amount C for each act of cooperation in the group. But
in case k = a, the mutation changes the group from being one in which cooperation occurs
only once, into one in which cooperation occurs an average of T times. When T is large,
this is beneficial for the mutant when the net benefit obtained from each one of the many
additional acts of cooperation, −C + aB/(n− 1), is positive, but is detrimental otherwise.
In case a > (n− 1)C/B, the mutation can therefore benefit the mutant in the long run. In
this case, types A are not altruistic when in groups with a total of a + 1 types A. Indeed,
their acts of cooperation are then needed to keep cooperation going in their group, and
therefore the initial such acts increase the fitness of the actor in the long run (life-cycle).
In contrast, when a ≤ (n − 1)C/B (as in Fig. 2 in the paper, where n = 50, C/B = 1/3
and a = 16), all the types A are altruistic, even those in groups with a total of a+ 1 types
A. It is still true that their acts of cooperation are needed to keep cooperation going, but,
while this benefits their group, it comes then at a net cost (or at least no gain) per action
for each type A individual.

39



It is known from [12] (see also [10]) that when (S31) holds, the 2lFW with m = 1 (which
is identical to the trait-group population structure, i.e., random assortment in groups) has
no stable equilibrium with types A present. This is therefore the case of the model in Fig.
2 in the paper. It is only through the effects of limited dispersal (population viscosity)
and the resulting assortment of types A that this altruistic allele can proliferate in the
population.
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Figure S21: Limit of large n under weak selection for the Iterated public goods (IPG) game
(Example 2). Panels represent critical migration rates (A and C) and critical relatedness (B
and D) for the IPG with C = 1, B = 5 and T = 100 as a function of ã = a/n. Top panels
A and B depict the case n = 20. Bottom panels C and D depict the case n = 100. In each
panel critical values obtained by the viability condition under weak selection derived from
(A2) (black full lines) are compared with the approximation for large n given by solving
(S27) in R (approx., dashed blue lines). In panel B we have R0

s = 4.02% when ã = 20%,
and in panel D we have R0

s = 5.54% when ã = 20%. Types A are altruistic in the strong
sense of (S31) when 0 ≤ ã ≤ 20%.
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Figure S22: Limit of large n under weak selection for the Iterated public goods (IPG) game
(Example 2): behavior of solutions for (S27) - Part 1. Top panel: H(R) corresponds to
the l.h.s. of (S27) while G(R) depicts the r.h.s. of (S27). H(R) is strictly decreasing and
it is positive for R < C/B. Derivatives of G(R) converge to 0 as R→ 0. H(R) and G(R)
are equal to each other at exactly one point R = R̃0

s that is a decreasing function of C/B.
Curves depicted correspond to the cases C/B = 0.5 (full black line), C/B = 0.2 (dashed
red line) and C/B = 0.1 (dot-dashed blue line) with ã = C/B and T = 100. Bottom panel:
R̃0
s as a function of ã for C/B = 0.5 (top, full black line), C/B = 0.2 (middle, dashed red

line) and C/B = 0.1 (bottom, dot-dashed blue line) and T = 100. R̃0
s is continuous in

the interval 0 ≤ ã ≤ 1, takes the value C/B on both end-points of this domain and has a
minimum at ã = C/B.
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Figure S23: Limit of large n under weak selection for the Iterated public goods (IPG)
game (Example 2): behavior of solutions for (S27) - Part 2. Top panel: G(R) and H(R)
for C/B = 0.5, ã = 0.5 and T = 10 (leftmost, full black line), T = 103 (dashed red line)
and T = 105 (dot-dashed blue line). R̃0

s is a decreasing function of T . Bottom panel: in

the limit T → ∞, if 0 ≤ ã < C/B then R̃0
s →

C/B−ã
1−ã (full magenta line). If C/B ≤ ã ≤ 1

then R̃0
s → 0 very slowly.
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Figure S24: Limit of large n under weak selection for the Iterated public goods (IPG)
game (Example 2): behavior of solutions for (S27) - Part 3. H(R) (strictly decreasing
straight line) and G(R) for C/B = 0.5 and T = 10 for ã = 0.01, 0.1, 0.3, 0.4, 0.5 from
right to left in Panel A and for ã = 0.5, 0.6, 0.7, 0.9, 0.999 from left to right in Panel B.
The graph of G(R) moves upwards for 0 ≤ ã < C/B and downwards for C/B ≤ ã ≤ 1.
G(R) → (T − 1)(BR − C) as ã → 0 (dashed magenta line in Panel A). In Panel B it can
be seen that G(R)→ 0 as ã→ 1.
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Figure S25: Limit of large n under weak selection for the Iterated public goods (IPG)
game (Example 2): behavior of solutions for (S27) - Part 4. In all panels C/B = 0.5.
Panel A depicts R̃0

s as a function of 1/ log(T ) for ã = 0.3 (full black line) and for ã = 0.7

(dashed red line). For 0 ≤ ã < C/B R̃0
s →

C/B−ã
1−ã (this value is approximately 0.286 for

the case shown). If C/B ≤ ã ≤ 1 then R̃0
s converges to 0 very slowly as T increases,

more specifically R̃0
s ∼ − log(1 − ã)/ log(T ) (dotted magenta line). Bottom panels show

the behavior of G(R) as T increases. Panel B: case ã < C/B for, from right to left,
T = 2, 10, 100, 500. Panel A: case ã > C/B for T = 2, 10, 100, 500, from right to left. G(R)

stays at zero for R̂ = max{C/B−ã
1−ã , 0} and goes monotonically to infinity for R̂ < R < C/B.

45



Figure S26: The solid lines provide the solution R̃0
s of C/B − R = (T − 1)R (1 −

(C/B))1/R, as a function of C/B, for (top to bottom) T = 1 (black), 10 (blue), 100
(magenta), 1000 (green) and 10000 (cian). The corresponding dashed lines with same
colors (no black one) provide the approximation (A5), R = − ln(1 − (C/B))/ lnT . This
figure is an expanded version of Panel C of Fig. 2 in the paper.
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S9 Time periods, mutations, viability conditions,

covariance-regression formulas

Time periods: When p(0) = p << 1, the evolution is well described by the linearized form
f(t+ 1) = f(t)M(A+ B), until p(t) is no longer small. We refer to the time period while
the linearized evolution is a good approximation as the “early stage”, E.S., as opposed to
the “late stage”, L.S., when the evolution of f(t) can no longer be well approximated in
this linear fashion. During the E.S., we have, from (S1), f(t) = Cρt(ν + e(t)), where the
error term e(t) satisfies maxi |ei(t)| < βt, with 0 ≤ β < 1, and C =

∑
k fk(0)ζk is a strictly

positive constant, of order p (since all the entries of f(0) must be of order p or smaller).
Therefore, we can think of the E.S. as the period of time while ρt << 1/p, or, equivalently,
t << log(1/p)/ log ρ. The E.S. can be further split into the “very early stage”, V.E.S.,
during which the error term e(t) is still relevant, and the “stationary early stage”, S.E.S.,
characterized by maxi |ei(t)| << 1, so that f(t) = Cρtν in good approximation. The S.E.S.
can be thought as the period of time 1 << t << log(1/p)/ log ρ. Thruought the E.S. we
have

∆p(t) = p δ

∑n
k=1 kfk(t)v

A
k∑n

k=1 kfk(t)
, f(t) = f(0)[M(A+B)]t. (S32)

But it is only in the S.E.S., that ∆p(t) takes the stationary form given by (A1).
In Fig. S10 the V.E.S. is the short time period (about 4 or 5 generations) before f(t)

reaches the line spanned by ν. Once f(t) is moving along that line, we are in the S.E.S..
In this figure the evolution is produced by the linearized form f(t + 1) = f(t)M(A + B),
so that one cannot see the L.S.. Under the non-linear dynamics, f(t) eventually departs
from that line, in the L.E..

Small mutation rate: The condition ρ < 1 (or ρ > 1) implies the local stability (or
instability) of the fixed point (0, ..., 0) of the dynamical system f(t). Stability here can be
interpreted with respect to small deviations from that fixed point as initial condition, or in
terms of the effect of a small mutation rate µ. For this latter purpose, we introduce mutation
at rate 0 < µ < 1 per individual per generation, by assuming that each offspring is of the
same type of her mother with probability 1−µ and otherwise is of the other type. Suppose
that f(0) = (0, ..., 0) and that µ is small. When types A are rare, the main effect of mutation
is to create new types A in groups that have no types A. Therefore, neglecting terms of order
µ2 or smaller, we have, f(1) = (µn, 0, ..., 0), f(2) = (µn, 0, ..., 0)M(A + B) + (µn, 0, ..., 0),
..., f(s) =

∑s−1
t=0(µn, 0, ..., 0)[M(A + B)]t. This series converges when ρ < 1, and diverges

when ρ > 1, since its generic term behaves as Cρtν, when t is large. This means that when
ρ < 1, f(t) converges to the perturbed fixed point fµ = µn

∑∞
t=0(1, 0, ..., 0)[M(A+B)]t, in

which p is of order µ, and represents a small perturbation of the fixed point f 0 = (0, ..., 0).
And, in contrast, when ρ > 1, allele A invades the population, for any mutation rate µ > 0.

Viability conditions: By a viability condition for an allele we mean a condition for it
to spread when rare. In the 2lFW setting, this means the instability of the fixed point
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f = (0, ..., 0), either with respect to a small perturbation of the initial condition or by
introducing a small mutation rate µ. Both are expressed by the mathematical condition
ρ > 1. This is equivalent to the condition ∆p > 0, under no mutation and for small
p(0) = p, provided that one waits until the S.E.S.. If we consider, say, an iterated public
goods game and start from f(0) = (np, 0, ..., 0), (resp. f(0) = (0, ..., 0, p)), then initially
p(0) = p and ∆p(t) is negative (resp. positive), regardless of the value of m. In both cases,
in the S.E.S., f(t) becomes parallel to ν and (A1) holds. Fig. S11, Fig. S12 and Fig. S13
illustrate this discussion. The evolution of the distribution f(t) towards multiples of ν may
be thought of metaphorically as “natural selection organizing the copies of the allele A
in the best way, compatible with the demographics, for them to grow”. Alternatively, we
can use the metaphor that “the allele A self-organizes itself in the best way, compatible
with the demographics, for it to grow”. Regardless of the language used, the condition
∆p > 0 is only equivalent to the viability condition in the S.E.S., when the distribution
of the copies of the allele A is stationary in a way compatible with natural selection and
the demographics. We believe that this lesson, that to obtain viability conditions, one
should only make requirements of the type ∆p > 0 under stationarity, had not been fully
appreciated before, and is a contribution from the current work.

Our viability condition, in the 2lFW setting, can be written, respectively as

ρ > 1, or, equivalently,
n∑
k=1

kνkv
A
k > 0, (S33)

in general (thanks to (A1)); as
n∑
k=1

πkv
A
k > 0, (S34)

under weak selection (thanks to (A2)); and as∫ 1

0

(1− x)
1
R
−2 ṽAx dx > 0, (S35)

with R = 1/(1 + 2mn), under the conditions of (A3). In the special case of (S35) in which
ṽAx = −C +Bx+B2x

2 + ...+Blx
l, we have the viability condition

C < BR +B2R2 + ...+BlRl, (S36)

where Rl = l!Rl/[(l − 1)R + 1)(l − 2)R + 1) · · · (R + 1)]. In the special case of (S35) in

which we have the THR with ṽAx = −C, for 0 ≤ x ≤ θ̃, and ṽAx = −C +A, for θ̃ < x ≤ 1,
we have the viability condition (see Section S7)

R >
1

1 + log(C/A)

log(1−θ̃)

In the special case of (S35) in which we have the IPG with ṽAx = −C +Bx, for 0 ≤ x ≤ α,
and ṽAx = T (−C +Bx), for α < x ≤ 1, we have the viability condition (see Section S8)

C − BR < (T − 1)

{
BR +

Bα− C
1− α

}
(1− α)1/R,
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that, when α = C/B, simplifies to

C − BR < (T − 1)BR (1− C/B)1/R.

The viability conditions above involve only parameters of the models. These inequalities
provide the exact conditions under which the allele A can proliferate in the corresponding
mathematical model. It is just natural to see them as counterparts to and generalizations
of Hamilton’s rule R > C/B for the PG.

Covariance-regression formulas: In the 2lFW framework, the fitness w• of the focal
individual is a function of I1 (that takes value 1 if the focal is of type A and 0 if it is of
type N) and of κ = (I2 + ...+In)/(n−1), the fraction of types A among the other members
of the focal group. Note that κ describes the social environment of the focal individual.
Using (S3), the regression coefficient of κ on I1 can be seen to be:

βt;κ,I1 =
Covt(I1, κ)

Vart(I1)
=

1

n− 1

Covt(I1, I2 + ...+ In)

Var(I1)
=

Covt(I1, I2)

Vart(I1)
= rt.

The following covariance-regression formulas are well known [5], [6]:

W̄ (t) ∆p(t) = Covt(w•, I1) = Vart(I1) βt;w•,I1 = Vart(I1)
(
βt;w•,I1|κ + βt;κ,I1βt;w•,κ|I1

)
.

(S37)
Here βt;w•,I1 is defined as the number that, together with a proper choice of the constant
αt, minimizes

IEt {w• − (αt + βt;w•,I1I1)}
2 ,

and βt;w•,I1|κ and βt;w•,κ|I1 are defined as the numbers that, together with a proper choice
of the constant α′t, minimize

IEt
{
w• − (α′t + βt;w•,I1|κI1 + βt;w•,κ|I1κ)

}2
.

If we define ct = −βt;w•,I1|κ and bt = βt;w•,κ|I1 , then (S37) reads

W̄ (t) ∆p(t) = p(t)(1− p(t)) (−ct + rtbt) , (S38)

valid in the 2lFW setting for any model, any initial state f(0) (with no conditions on p)
and for all time t. In the case of the public goods game, w• = 1+ δ(−CI1 +Bκ), and (S38)
becomes the well known [7] W̄ (t)∆p(t) = p(t)(1 − p(t))δ(−C + Brt). But the simplicity
of this special case hides the fact that for other models the regression coefficients ct and bt
depend not only on the parameters of the model, but also on the distribution of alleles in
the population in generation t.

Admittedly, (S38) is always valid, while (S32) is valid only when p(0) << 1, during
the E.S.. But for the purpose of deciding in the 2lFW when the allele A can invade the
population, (S32) and its form (A1) for the S.E.S. give the answer, while we do not see how
to use (S38) for this purpose, without first studying how f(t) evolves. This is so because
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ct, bt and rt are regression coefficients associated to the random experiment of choosing the
focal individual when the distribution of alleles in the groups is given by f(t). And once
the evolution of f(t) has to be studied, one can use (S32) directly, without any need to
invoke (S38).

Cannot replace regression coefficients with partial derivatives: A popular pro-
cedure for approximating (S38) by something easier to analyse, under weak selection, is
the replacement of the regression coefficients ct = −βt;w•,I1|κ and bt = βt;w•,κ|I1 by partial
derivatives of fitness functions with respect to I1 and κ, respectively. See for instance [16],
[6] (Box 6), or [18] (condition (6.7)). (The standard notation involves defining y = δI1,
z = δκ and w(y, z) = w•, and expressing (S38) in terms of y and z, rather than I1 and κ.
This would make no relevant difference in the computations below.)

We compute next the critical level of relatedness needed for invasion by allele A in the
case of the IPG, using that approximation. For the IPG we have

w• =

{
1 + δ[−CI1 +Bκ], if (n− 1)κ+ 1 ≤ a,
1 + δ[T (−CI1 +Bκ)], if (n− 1)κ+ 1 > a.

We are interested in analysing (S38) when p is close to 0. In this case the relevant partial
derivatives would be taken at I1 = κ = 0, and would be ∂w•/∂I1 = −δC, ∂w•/∂κ = δB.
Therefore (S38) would become ∆p = pδ(−C + Brt). Then we would conclude that allele
A could only invade when δ is small if R0 > C/B. But as we know from Section S8, this
is incorrect in a substantial way. Note that the limit δ → 0 corresponds to the limit of
“vanishing trait variation” under which [6] and [18] claim that the replacement of regression
coefficients by derivatives, as in the computation above, would give the right condition for
invasion (when p is small the condition of “vanishing genetic variation” required in [18] is
also met).
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