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S1. Command-lines for the simulations that were used to compare the performance of SweeD 
and SweepFinder

We have used the software msms (Ewing and Hermisson 2010) to simulate neutral datasets and datasets with 
selection. The command line for the neutral dataset is:

java -Xmx125000M -jar msms.jar -N 1000000 -ms X 1 -s S -r 5000 5000

where X is the sample size and S denotes the number of SNPs. In our case X = {50, 100, 750, 1000} and S = 
{10000, 100000, 1000000}. 

For the dataset with selection the command line is:

java -Xmx125000M -jar msms.jar -N 1000000 -ms X 1 -s S -r 5000 5000 -Sp 0.5 -SF 0.001 1.0 -SAA 10000 
-SAa 5000 -Saa 0



S2. Command lines for the simulations that were used to assess the effect of sample size on 
the accuracy of sweep detection

We have used the following command lines for simulating a sample from a constant population:

 msms -N 1000000 -ms X 1000 -t 4000 -r 10000 40000 -Sp 0.5 -STrace all_trajectory.txt -oSweeD -length 
400000

-N 1000000 denotes the present-day population size
-ms X 1000 denotes that X sequences were simulated 1000 times. X = 12, 50, 100, 500, 1000
-t 4000: the value of the θ parameter for the whole region
-r 10000 40000: the value of ρ:=10000 and there are 40000 points on the genome where recombination may 
occur
-Sp 0.5 denotes that the recombination has occurred at the middle of the genomic regions
-STrace all_trajectory.txt specifies the file where the trajectories of the beneficial allele have been stored
-oSweeD: output data in SF format
-length 400000: the length of the genomic region

For sampling from a bottlenecked population that was described in the main text, we have used the following 
command-line:

msms -N 100000 -ms X 1000 -t 4000 -r 10000 40000 -Sp 0.5 -STrace all_trajectory.txt -oSweeD -length 400000 
-eN 0.0375 0.01 -eN 0.03875 1.0

The flags are the same as in the constant-size model. The flags -eN 0.0375 0.01 -eN 0.03875 1.0 specify the 
demographic model:
-eN 0.0375 0.01: at time 0.0375 (scaled in units of 4N) pastwards, the population was decreased by a factor of 
100. 
-eN 0.03875 1.0: at time 0.03875 (scaled in units of 4N) pastwards, the population size was as large as in the 
present-day. 

The three additional bottleneck models that we used to further generalize the results for the bottleneck model can 
be simulated with the following command lines:

Excess of intermediate- and high-frequency derived alleles
msms -N 1000000 -ms X 1000 -t 4000 -r 10000 40000 -Sp 0.5 -STrace all_trajectory.txt -oSweeD -length 
400000 -eN 0.025 0.01 -eN 0.027 1

Excess of low- and high-frequency derived alleles
msms -N 1000000 -ms X 1000 -t 4000 -r 10000 40000 -Sp 0.5 -STrace all_trajectory.txt -oSweeD -length 
400000 -eN 0.025 0.01 -eN 0.035 1

Excess of low-frequency derived alleles
msms -N 1000000 -ms X 1000 -t 4000 -r 10000 40000 -Sp 0.5 -STrace all_trajectory.txt -oSweeD -length 
400000 -eN 0.025 0.01 -eN 0.075 1 

Note that X = 12, 50, 100, 500 for the last three models in order to save computational time. 



S3. Additional bottleneck models to assess the effect of the sample size on the accuracy of 
sweep localization. 

We have simulated three additional bottlenecks to further generalize the results regarding the effect of 
sample size on the accuracy of sweep localization. The parameters of these bottleneck models have 
been chosen to generate site frequency spectra that are characterized by i) excess of low-frequency 
derived alleles, ii) excess of low- and high-frequency derived alleles, and iii) excess of intermediate- 
and high-frequency derived alleles. Figure S1 shows the site frequency spectra for a sample of 20 
sequences. The Hudson's ms command lines flags that correspond to the demographic models are:

1. -eN 0.025 0.01 -eN 0.027 1

2. -eN 0.025 0.01 -eN 0.035 1

3. -eN 0.025 0.01 -eN 0.075 1 

Figure S1: The site frequency spectra of three bottleneck models (light bars) that were used to assess 
the effect of sample size on the accuracy of sweep detection. We also show the SFS of the standard 
neutral model (dark bars) for comparison.



For all three bottleneck models increasing sample size results in greater accuracy of sweep 
localization (Figure S2).



Figure S2: Assessment of the accuracy of predicting the selective sweep position for various sample 
sizes and demographic parameters. The x-axis in all plots shows the distance d of the reported selective 
sweep position from the true selective sweep position. Distance is grouped in bins of size 10000, i.e. d1 = 
10000, d2 = 20000, …, d20 = 200000. For each bin i, the y-axis shows the frequency of simulated datasets with a 
reported selective sweep position at a distance less than di. The plots refer to the same bottleneck models as in 
Figure S2. In detail, the demographic model of (A) is described by Hudson's ms command line options -eN 
0.025 0.01 -eN 0.027 1. In (B) the respective Hudson's ms command line options are -eN 0.025 0.01 -eN 0.035 
1, and in (C) -eN 0.025 0.01 -eN 0.075 1. The straight line depicts the expected percentage of simulations at each 
bin, if the position of a reported selective sweep would be distributed uniformly along the simulated fragment 
of 400 kb. The figure shows that accuracy of detecting selective sweeps increases with sample size in 
all bottlenecked populations.



S4. Genes located in the outlier genomic regions

Supplementary Table S1

Description of the outlier genes (significance threshold at 0.01 for both SweeD and OmegaPlus) of the 
chromosome 1 of the 1000 Genomes dataset. Columns OmegaPlus and SweeD provide the score for the 
OmegaPlus and SweeD, respectively. The column Function provides a summary of the function of the gene. 
Gene Name and Gene Description give the gene name and a short description of the gene. 
Gene 
Name OmegaPlus SweeD Gene Description Function

IFFO2 2086.949219 14.72967
intermediate filament 
family orphan 2 -

PIGV 1465.577637 33.22361

phosphatidylinositol 
glycan anchor 
biosynthesis, class V

Alpha-1,6-mannosyltransferase involved in 
glycosylphosphatidylinositol-anchor 
biosynthesis. Transfers the
second mannose to the 
glycosylphosphatidylinositol during GPI 
precursor assembly

FAM46B 437.057983 8.575692

family with sequence 
similarity 46, member 
B -

WDTC1 312.270355 19.43544

WD and 
tetratricopeptide 
repeats 1

enzyme inhibitor activity, protein binding, 
histone binding

CSMD2 1528.953003 21.42344
CUB and Sushi 
multiple domains 2

BEND5 270.87326 11.6375
BEN domain 
containing 5

AGBL4 1651.128296 9.678677
ATP/GTP binding 
protein-like 4

Metallocarboxypeptidase that mediates 
deglutamylation of target proteins. 
Catalyzes the deglutamylation of
polyglutamate side chains generated by 
post-translational polyglutamylation in 
proteins such as tubulins. Also removes
gene-encoded polyglutamates from the 
carboxy-terminus of target proteins such as 
MYLK. Acts as a long-chain
deglutamylase and specifically shortens 
long polyglutamate chains, while it is not 
able to remove the branching point
glutamate, a process catalyzed by 
AGBL5/CCP5 (By similarity)

ELAVL4 1886.829468 10.29922

May play a role in neuron-specific RNA 
processing. Protects CDKN1A mRNA from 
decay by binding to its 3'-UTR
(By similarity). Binds to AU-rich sequences 
(AREs) of target mRNAs, including VEGF 
and FOS mRNA

NFIA 1390.370483 17.82784 nuclear factor I/A Recognizes and binds the palindromic 



sequence 5'-TTGGCNNNNNGCCAA-3' 
present in viral and cellular promoters
and in the origin of replication of 
adenovirus type 2. These proteins are 
individually capable of activating
transcription and replication

DEPDC1 355.366943 18.8921
DEP domain 
containing 1

May be involved in transcriptional 
regulation as a transcriptional corepressor. 
The DEPDC1A-ZNF224 complex
may play a critical role in bladder 
carcinogenesis by repressing the 
transcription of the A20 gene, leading to
transport of NF-KB protein into the nucleus, 
resulting in suppression of apoptosis of 
bladder cancer cells

SRSF11 1691.930786 8.277768
serine/arginine-rich 
splicing factor 11

This gene encodes 54-kD nuclear protein 
that contains an arginine/serine-rich region 
similar to segments found in
pre-mRNA splicing factors. Although the 
function of this protein is not yet known, 
structure and immunolocalization
data suggest that it may play a role in pre-
mRNA processing. Alternative splicing 
results in multiple transcript
variants encoding different proteins. In 
addition, a pseudogene of this gene has been 
found on chromosome 12.(provided
by RefSeq, Sep 2010)

May function in pre-mRNA splicing

ZNF326 2922.085205 10.47725 zinc finger protein 326

Core component of the DBIRD complex, a 
multiprotein complex that acts at the 
interface between core mRNP
particles and RNA polymerase II (RNAPII) 
and integrates transcript elongation with the 
regulation of alternative
splicing: the DBIRD complex affects local 
transcript elongation rates and alternative 
splicing of a large set of exons
embedded in (A + T)-rich DNA regions. 
May play a role in neuronal differentiation 
and is able to bind DNA and activate
expression in vitro

RPL5 916.188721 10.76833 ribosomal protein L5

Required for rRNA maturation and 
formation of the 60S ribosomal subunits. 
This protein binds 5S RNA

MTF2 566.222595 8.334026

metal response element 
binding transcription 
factor 2

Binds to the metal-regulating-element 
(MRE) of metallothionein-1A gene 
promoter. Binding is zinc-dependent
(By similarity)

DPYD 441.677795 15.29442 dihydropyrimidine Involved in pyrimidine base degradation. 



dehydrogenase

Catalyzes the reduction of uracil and 
thymine. Also involved the
degradation of the chemotherapeutic drug 5-
fluorouracil

FLJ39739 302.900482 9.106405
Uncharacterized 
FLJ39739

S100A11 8305.124023 15.14509
S100 calcium binding 
protein A11

Facilitates the differentiation and the 
cornification of keratinocytes

GON4L 499.727264 22.39637
LOC4407
04 2182.756104 17.56356

KCNT2 690.009888 10.04751
potassium channel, 
subfamily T, member 2

Outward rectifying potassium channel. 
Produces rapidly activating outward 
rectifier K(+) currents. Activated
by high intracellular sodium and chloride 
levels. Channel activity is inhibited by ATP 
and by inhalation anesthetics,
such as isoflurane (By similarity). Inhibited 
upon stimulation of G-protein coupled 
receptors, such as CHRM1 and GRIA1



S5. Deviation of the simulation-based estimation of the SFS from the theoretical expectation

A flexible approach to estimate the average SFS for a variety of neutral demographic scenarios is by using 
simulations. For example Hudson's ms and msms (Ewing and Hermisson 2010) allow for simulating a multitude 
of demographic scenarios (with one or more demes, constant or varying population size, etc), and thus it enables 
the estimation of the neutral average SFS for a variety of demographies. A disadvantage of using simulations is 
that a large number of replications is required to acquire as accurate results as the analytical calculations (using 
the MPFR library for arbitrary precision). 

We estimated the accuracy of the SFS calculations as follows. We assumed a sample of size n=1000 
sequences from a bottlenecked population. The population size was decreased by a factor of 100 at time 0.0375 
to attain its present-day level at time 0.03875 (time is measured in units of 4N generations and proceeds 
backwards; 0.0375 corresponds to 150,000 generations). The theoretical expected relative frequency r1000,i (here 
abbreviated as ri) of a SNP of frequency i as given in the main text was calculated using Mathematica (v. 7). Let 

S i  be the frequency of a SNP of frequency i estimated via simulations. For a SNP of frequency i, deviation 

Di was defined as: Di=
S i /ri−1, for S i> ri

ri /S i−1, for S i< ri

0, otherwise

. 

Thus, Di is positive for SNPs whose frequencies are overestimated and negative otherwise. Results are shown in 
Figure S3. Note that deviations are of the order of 0.1 when the average SFS is calculated using 1000 simulated 
datasets. 



Figure S3: Deviation of thesimulated average SFS from the theoretical expectation. A bottleneck scenario was 
used for the simulations. A) 10 datasets were simulated to calculate the average SFS. Absolute deviation values 
are larger than 1, but for illustration purposes we show values between -1 and 1 only. B) 100 datasets were 
simulated to calculate the average SFS and C) 1000 datasets were simulated. Command-lines are provided in the 
supplementary section “Command-lines for simulations used in comparing the time needed to estimate the 
SFS either by simulations or by the SweeD”. Deviation decreases with the number of simulated datasets. 
Furthermore, deviation is larger for high-frequency derived SNPs. 



S6. Command-lines for simulations used in comparing the time needed to estimate the SFS 
either by simulations or by the SweeD

The SFS was estimated either by SweeD (using the MPFR library) or by simulations (using msms). The 
following command line was used for SweeD:

SweeD -name $X -s $X -osfs SweeD_$X.SFS -eN 0.0375 0.01 -eN 0.03875 1.0, 

where $X = 10, 100, 500, 1000 denotes the sample size.

For simulations we used the commands:
msms -ms $X $R -t 1000 -r 1000 2000 -eN 0.0375 0.01 -eN 0.03875 1.0

where $X = 10, 100, 500, 1000 denotes the sample size, 
$R = 10, 100, 1000 denotes the number of replications. 

For the recombination rate, we used the value 1000, which resembles approximately the recombination rate of a 
fragment of 10 kb in D. melanogaster (European population). We could use a lower recombination rate (which 
would accelerate the simulations). However, using a lower value for the recombination rate would require a 
higher number of simulations in order to produce results of similar accuracy. 
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