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Supporting Information

Text S1: Bending energy for surfaces of revolution

The variations of energy due to the mean curvature in a general surface are given by

Em =
κ

2

∫

Ω

[C1(x, y) + C2(x, y)]2dA. (S1)

When the surface can be represented in Cartesian coordinates as

~r = (x, y, h(x, y)) , (S2)

the mean curvature is found to be given by

C1 + C2

2
=

(1 + h2
x)hyy + (1 + h2

y)hxx − 2hxhyhxy

2(1 + h2
x + h2

y)3/2
(S3)

and the element of area by

dA =
√

1 + h2
x + h2

y dxdy (S4)

where the x and y subscripts represent partial derivatives with respect to this variable (see Ref. [3] for the
derivation of the previous equations). As illustrative examples we can consider: a hemisphere of radius
R0 described by

h(x, y) =
√

R2
0 − x2

− y2, (S5)

which gives
C1 + C2

2
= −

1

R0
, E(hemisph)

m = 4πκ. (S6)

and a hemicylinder of radius R0 and length L described by

h(x, y) =
√

R2
0 − y2, (S7)

which gives
C1 + C2

2
= −

1

2R0
, E(hemicyl)

m = πκ
L

R0
(S8)

The scale invariance of these examples is in fact a general property of the bending Hamiltonian in Eq. (1).
It can be shown that the bending energy Em is invariant under the overall dilatation x → λx, y → λy,
and h → λh. This implies that if we know the optimal shape for a given size, the optimal shape for other
sizes can be obtained just by an overall rescaling.

For a surface of revolution with rotation symmetry axis along x,

h(x, y) =
√

R2(x) − y2 (S9)

parameterizes the upper half of the surface Ω+ [the lower half of the surface Ω
−

would be parameterized
by h(x, y) = −

√

R2(x) − y2]. Using the parameterizations for Ω+/− the mean curvature becomes

C1 + C2

2
=

RxxR − 1 − R2
x

2(1 + R2
x)3/2R

(S10)

Note that the results are independent on y, as corresponds to rotational symmetry around x. The element
of area is

dA = R

√

1 + R2
x

R2
− y2

dxdy. (S11)
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If the surface is between xi and xf , its total area would be

A = 2

∫

Ω+

dA = 2

∫ xf

xi

R
√

1 + R2
x

∫ R(x)

−R(x)

1
√

R2
− y2

dy dx

= 2π

∫ xf

xi

R
√

1 + R2
xdx, (S12)

where the factor 2 outside the integral comes for the symmetry between Ω+ and Ω
−

, and we have
integrated the y variable. For the total volume enclosed by the surface we have

V = 2

∫

Ω+

h(x, y)dydx = π

∫ xf

xi

R2dx. (S13)

Analogously, once the membrane profile is known, the bending energy Em [Eq. (S1)] for a surface of
revolution is given by

Em = κ

∫ xf

xi

(1 + R2
x − RxxR)2

(1 + R2
x)5/2R

∫ R(x)

−R(x)

1
√

R2
− y2

dy dx

= πκ

∫ xf

xi

(1 + R2
x − RxxR)2

(1 + R2
x)5/2R

dx. (S14)

The scale invariance of the bending Hamiltonian in Eq. (S1) for surfaces of revolution implies no de-
pendence of the bending energy on the system size. Thus, in Eq. (S14), for any shape the transformed
under the overall dilatation x → λx and f → λR has the same bending energy. This overall dilatation

transforms Rx = dR
dx in d(λR)

d(λx) = λ
λ

dR
dx , also Rxxf in d

d(λx)

[

d(λR)
d(λx)

]

λR = λ2

λ2

d2R
dx2 R = Rxxf , and dx

R in

d(λx)
λR = λ

λ
dx
R = dx

R . Therefore, the whole expression for the bending energy is scale invariant. Thus,
once we have determined the shape that minimizes the energy, its transformed under an overall dilatation
has the same energy and also minimizes the energy. Analogously it can be shown that under an overall
dilatation the area is transformed as A → λ2A and the volume as V → λ3V .


