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Table S1: Data sources
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Table S2: Environmental covariate metadata

VARIABLE METRIC UNITS DEPTH-SPECIFIC SOURCE
Apparent Oxygen Utilization* Monthly Mean mL/L Yes 5
Calcite Concentration Annual Mean mol/m? No 6
Chlorophyll A Concentration Annual Mean mol/m? No 6
Chlorophyll A Concentration* Annual Range mol/m? No 6
Chlorophyll A Concentration Annual Standard Deviation mol/m? No 7
Chlorophyll A Concentration* Monthly Mean mol/m? No 7
Cloud Fraction Annual Mean % No 6
Cloud Fraction Annual Standard Deviation % No 7
Cloud Fraction Monthly Mean % No 7
Day Length* Monthly Mean h No 8
Diffuse Attenuation Annual Mean m? No 6
Dissolved Oxygen Monthly Mean mL/L Yes 5
Distance from Land NA km NA 9
Dust Flux Annual Mean g/m? No 10
Dust Flux Annual Standard Deviation g/m? No 10
Dust Flux Monthly Mean g/m? No 10
Insolation* Annual Mean W/m? No 6
Insolation* Annual Standard Deviation W/m?* No 7
Insolation* Monthly Mean W/m? No 7
Latitude NA Degrees NA NA
Nitrate Concentration* Annual Mean pmol/L No 6
Nitrate Concentration Annual Standard Deviation pmol/L No 11
Nitrate Concentration* Monthly Mean pmol/L Yes 11
Nitrate:Phosphate Ratio Monthly Mean NA Yes 11
Ocean Depth* NA m NA 7
Ocean Temperature Annual Mean °C No 6
Ocean Temperature* Annual Range °C No 12
Ocean Temperature Annual Standard Deviation °C No 12
Ocean Temperature* Monthly Mean °C Yes 12
Oxygen Saturation Monthly Mean NA Yes 5
pH Annual Mean NA No 6
Phosphate Concentration* Annual Mean pmol/L Yes 6
Phosphate Concentration Annual Standard Deviation pmol/L No 11
Phosphate Concentration* Monthly Mean pmol/L Yes 11
Proximity to Thermocline* Monthly Mean log(m) No 13
Pycnocline Depth Annual Standard Deviation m No 13
Pycnocline Depth Monthly Mean m No 13
Salinity* Annual Mean PSs No 6
Salinity* Annual Standard Deviation PSS No 14
Salinity* Monthly Mean PSs Yes 14
Sea Ice Concentration Annual Mean % No 9
Sea Ice Concentration Annual Standard Deviation % No 7
Sea Ice Concentration* Monthly Mean % No 9
Thermocline Depth Annual Standard Deviation m No 13
Thermocline Depth Monthly Mean m No 13
Sampling Depth NA m NA NA
Sampling Year NA Julian Day Number NA NA
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Table S4: Environmental covariate coverage

GLOBALLY GLOBALLY GLOBALLY
VARIABLE METRIC REPRESENTATIVE REPRESENTATIVE REPRESENTATIVE PROPORTION OF AREA

SAMPLE K-S SAMPLE SIZE SAMPLE P-VALUE WITH MESS <-20
Apparent Oxygen Utilization Monthly Mean 0.2117 234 <0.001 0.0002
Calcite Concentration Annual Mean 0.4456 234 <0.001 0.0006
Chlorophyll A Concentration Annual Mean 0.4804 234 <0.001 0.0002
Chlorophyll A Concentration Annual Range 0.4666 234 <0.001 0.0005
Chlorophyll A Concentration Annual Standard Deviation 0.1832 91 <0.005 0.0003
Chlorophyll A Concentration Monthly Mean 0.5136 229 <0.001 0.0001
Cloud Fraction Annual Mean 0.3181 234 <0.001 0
Cloud Fraction Annual Standard Deviation 0.2363 234 <0.001 0.0275
Cloud Fraction Monthly Mean 0.3203 234 <0.001 0
Day Length Monthly Mean 0.2495 234 <0.001 0
Diffuse Attenuation Annual Mean 0.5183 234 <0.001 0.0001
Dissolved Oxygen Monthly Mean 0.273 234 <0.001 0
Distance from Land NA 0.6947 234 <0.001 0.1099
Dust Flux Annual Mean 0.4569 234 <0.001 0.0051
Dust Flux Annual Standard Deviation 0.0365 234 NS 0.0118
Dust Flux Monthly Mean 0.0962 234 NS 0.0093
Irradiance Annual Mean 0.3651 234 <0.001 0
Irradiance Annual Standard Deviation 0.4599 234 <0.001 0.0002
Irradiance Monthly Mean 0.0797 234 NS 0
Latitude NA 0.587 234 <0.001 0
Nitrate Concentration Annual Mean 0.2695 234 <0.001 0
Nitrate Concentration Annual Standard Deviation 0.4436 234 <0.001 0.005
Nitrate Concentration Monthly Mean 0.103 234 <0.05 0.0003
Nitrate:Phosphate Ratio Monthly Mean 0.0007 234 NS 0.0074
Ocean Depth NA 0.5811 234 <0.001 0.0001
Ocean Temperature Annual Mean 0.3336 234 <0.001 0
Ocean Temperature Annual Range 0.4911 234 <0.001 0.0006
Ocean Temperature Annual Standard Deviation 0.4549 234 <0.001 0.0024
Ocean Temperature Monthly Mean 0.3045 234 <0.001 0
Oxygen Saturation Monthly Mean 0.1761 234 <0.001 0.0002
pH Annual Mean 0.1759 234 <0.001 0.0161
Phosphate Concentration Annual Mean 0.1954 234 <0.001 0
Phosphate Concentration Annual Standard Deviation 0.3478 234 <0.001 0.0123
Phosphate Concentration Monthly Mean 0.1037 234 <0.05 0.0004
Proximity to Thermocline Monthly Mean 0.3355 234 <0.001 0
Pycnocline Depth Annual Standard Deviation 0.1627 221 <0.001 0.047
Pycnocline Depth Monthly Mean 0.2037 234 <0.001 0.0372
Salinity Annual Mean 0.2895 234 <0.001 0
Salinity Annual Standard Deviation 0.1074 234 NS 0.0045
Salinity Monthly Mean 0.2389 234 <0.001 0
Sea Ice Concentration Annual Mean 0.0804 234 NS 0.0001
Sea Ice Concentration Annual Standard Deviation 0.073 234 NS 0
Sea Ice Concentration Monthly Mean 0.0353 234 NS 0
Thermocline Depth Annual Standard Deviation 0.2955 221 <0.001 0.0346
Thermocline Depth Monthly Mean 0.2814 234 <0.001 0.0192
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Table S6: Best models, Analysis I

NUMBER OF STATISTIC

PARAMETERS ~MINIMIZED ~ COVARIATES!

0 CVR? -

0 AIC/BIC -

1 CVR? DaylengthSq

1 AIC/BIC DaylengthSq

2 CVR? DaylengthSq, PhosphateAnnualSq

2 AIC/BIC DaylengthSq, Phosphate AnnualSq

3 CVR? DaylengthSq, PhosphateAnnualSq, ThermoclineDistance

B AIC/BIC DaylengthSq, PhosphateAnnualSq, ThermoclineDistance

4 CVR? DaylengthSq, PhosphateAnnualSq, ThermoclineDistance, ChlorophyllRange

4 AIC/BIC DaylengthSq, PhosphateAnnualSq, ThermoclineDistance, ChlorophyllRange

5 CV R? PhosphateAnnualSq, ThermoclineDistance, TempRange, Insolation, InsolationStDev

5 AIC/BIC PhosphateAnnualSq, ThermoclineDistance, TempRange, Insolation, InsolationStDev

6 CV R? PhosphateAnnual, ThermoclineDistance, Insolation, InsolationAnnual, ChlorophyllRange, NitrateAnnual

6 AIC/BIC PhosphateAnnual, ThermoclineDistance, Insolation, InsolationAnnual, ChlorophyllRange, NitrateAnnual

7 CV R? PhosphateAnnual, ThermoclineDistance, Insolation, InsolationAnnual, ChlorophyllRange, NitrateAnnual, Salinity

7 AIC/BIC PhosphateAnnual, ThermoclineDistance, Insolation, InsolationAnnual, ChlorophyllRange, NitrateAnnual, Salinity

8 CV R? PhosphateAnnual, ThermoclineDistance, Insolation, InsolationAnnual, ChlorophyllRange, NitrateAnnual, Salinity, Chlorophyll

8 AIC/BIC PhosphateAnnual, ThermoclineDistance, Insolation, InsolationAnnual, ChlorophyllRange, NitrateAnnual, Salinity, SalinityStDev
!Abbreviations

Chlorophyll: mean chlorphyll a concentration in month sampled
ChlorophyllRange: mean annual range of chlorophyll a concentration
Daylength: mean daylength in month sampled

DaylengthSq: square of mean daylength in month sampled
Insolation: mean insolation in month sampled

InsolationAnnual: mean annual insolation

InsolationStDev: annual standard deviation of insolation

Nitrate: mean nitrate concentration in month sampled

NitrateAnnual: mean annual nitrate concentration

OceanDepth: depth of ocean

Oxygen: mean oxygen utilization in month sampled

Phosphate: mean phosphate concentration in month sampled
PhosphateA 1: mean annual phosphate concentration
PhosphateAnnualSq: square of mean annual phosphate concentration
Salinity: mean salinity in month sampled

SalinityAnnual: mean annual salinity

SalinityStDev: annual standard deviation of insolation

Seaice: sea ice concentration in month sampled

Temp: mean ocean temperature in month sampled

TempRange: mean annual range of sea surface temperature
ThermoclineDistance: log of distance between sampling depth and mean thermocline depth in month sampled




Table S7: Selected Models

ANALYSIS A O COVARIATES!

1 3 DaylengthSq, PhosphateAnnualSq, ThermoclineDistance

1 4 DaylengthSq, PhosphateAnnualSq, ThermoclineDistance, ChlorophyllRange

v 3 DaylengthSq, PhosphateAnnualSq, ThermoclineDistance

v 3 DaylengthSq, PhosphateAnnualSq, SalinityStDev

VI 5 ChlorophyllRange, InsolationAnnual, PhosphateAnnual, SalinityStDev, DaylengthSq
ViII 2 DaylengthSq, Phosphate Annual

VIII 7 Chlc 1IRange, D gth, Pl A 1, Seaice, Temp, OceanDepth, Salinity
X 4 Insolation, NitrateAnnual, SalinityAnnual, PhosphateAnnualSq

X 3 InsolationAnnual, InsolationStDev, SalinityStDev

XI 5 Daylength, InsolationAnnual, NitrateAnnual, Salinity, PhosphateAnnualSq

XIT 3 InsolationAnnual, SalinityAnnual, Temp

X1 3 Insolation, PhosphateMean, OceanDepth

X1V 3 InsolationAnnual, Temp, DaylengthSq

XV 2 Salinity, TempRange

!Abbreviations

Chlorophyll: mean chlorphyll a concentration in month sampled
ChlorophyllRange: mean annual range of chlorophyll a concentration
Daylength: mean daylength in month sampled

DaylengthSq: square of mean daylength in month sampled
Insolation: mean insolation in month sampled

InsolationAnnual: mean annual insolation

InsolationStDev: annual standard deviation of insolation

Nitrate: mean nitrate concentration in month sampled

NitrateAnnual: mean annual nitrate concentration

OceanDepth: depth of ocean

Oxygen: mean oxygen utilization in month sampled

Phosphate: mean phosphate concentration in month sampled

P I: mean annual phosphate concentration
PhosphateAnnual Sq: square of mean annual phosphate concentration
Salinity: mean salinity in month sampled

SalinityAnnual: mean annual salinity

SalinityStDev: annual standard deviation of insolation

Seaice: sea ice concentration in month sampled

Temp: mean ocean temperature in month sampled

TempRange: mean annual range of sea surface temperature
ThermoclineDistance: log of distance between sampling depth and mean thermocline depth in month sampled
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@ MICROBIS

@ FUHRMAN2008
© POMMIER2007
®)

GOs

Figure S1: Sampling locations for data used in constructing maps. Models with
zero to eight parameters were fitted using MICROBIS data. Predictive performance of
the models was evaluated using both internal measures of model performance (AIC, BIC,
and PRESS) and three independent data sets, collected at the locations shown in red,
green, and yellow (see Table S1). Analyses were based on 377 samples (234 MICROBIS,
30 GOS, 9 POMMIER2007, 103 FUHRMAN2008) collected from 164 distinct locations.
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Figure S2: Maps of global marine bacterial diversity. Sequences are classified using
RDP, and diversity is modeled using a linear model (Analysis II; see Table S5). (A) In
December, OTU richness peaks in temperate latitudes in the Northern Hemisphere. (B) In
June, OTU richness peaks in temperate latitudes in the Southern Hemisphere. Predicted
richness during the spring and fall is intermediate, with roughly globally uniform richness
near the equinoxes. These predictions hold regardless of the method used to classify reads
(see Table S5 and Fig. 1)
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Figure S3: Maps of global bacterioplankton diversity. Sequences are classified
using de nowvo clustering, and diversity is modeled using a multiple adaptive regression
splines model (Analysis III; see Table S5). (A) In December, OTU richness peaks in
temperate latitudes in the Northern Hemisphere. (B) In June, OTU richness peaks in
temperate latitudes in the Southern Hemisphere. Predicted richness during the spring
and fall is intermediate, with roughly globally uniform richness near the equinoxes. These
predictions hold regardless of the modeling method (see Table S5 and Fig. 1).
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Figure S4: Maps of global marine bacterial diversity. Sequences are classified using
de novo clustering and a linear model is used (see Table S5). A sub-optimal, seven-
predictor model is used (Table S6 and Fig. S8). (A) In December, OTU richness peaks
in temperate latitudes in the Northern Hemisphere. (B) In June, OTU richness peaks
in temperate latitudes in the Southern Hemisphere. Predicted richness during the spring
and fall is intermediate, with roughly globally uniform richness near the equinoxes. These
predictions are robust to the exact predictors used; see the map in Fig. 1, which was
generated using the optimal, three-parameter model given in Table S6.
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Figure S5: Maps of global marine bacterial diversity. Sequences are classified using
de novo clustering, and diversity is modeled using a linear model, but sequencing depth
is shallow (150 reads; Analysis IV; see Table S5). (A) In December, OTU richness peaks
in temperate latitudes in the Northern Hemisphere. (B) In June, OTU richness peaks
in temperate latitudes in the Southern Hemisphere. Predicted richness during the spring
and fall is intermediate, with roughly globally uniform richness near the equinoxes. These
predictions hold regardless of the rarefaction depth (see Table S5 and Fig. 1).
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Figure S6: Maps of standard errors of estimated richness for Analysis 1.
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Figure S7: MESS plots for Analysis I. Sequences are classified using de novo clus-
tering and a linear model is used (see Table S5). MESS plots give an estimate of where
extrapolation, rather than interpolation, is necessary to project an SDM to geographic
space. Negative MESS values indicate that at least one predictor variable is outside of the
observed range. Overall, the variables used in the selected model were mostly within the
observed range, indicating that maps were primarily based on interpolation rather than
extrapolation.
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Figure S8: Model selection for Analysis I. Sequences are classified using de novo
clustering and richness is modeled using a linear model (see Table S5). The graphs in (A),
(B), (C), respectively, show the best possible cross validation, BIC, and AIC values for the
given number of predictors. (D) and (E) show the performance of the best cross validation
model when used to predict independent data: POMMIER2007 and FUHRMAN2008,
respectively. (F) Rate at which 95% prediction intervals cover observed values for the
GOS data, when the model is fit using RDP-classified sequences at a rarefaction depth
of 150 sequences. In all cases, the model was fit using MICROBIS data. All of training
data measures (A, B, and C) point to a six-predictor model. However, the independent
measures indicate that a six-predictor model is overfit, and that a three-predictor model
is preferable. We, therefore, implemented the three-predictor model.
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Figure S9: Leave-one-out cross validation for Analysis I. Sequences are classified
using de novo clustering and a linear model is used.
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Figure S10: Leave-one-out cross validation for Analysis I11. Sequences are classified
using de novo clustering and a multiple adaptive regression splines model is used.
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Figure S11: Leave-one-out cross validation for Analysis II. Sequences are classified
using RDP and a linear model is used.
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Figure S12: Leave-one-out cross validation for Analysis I'V. Sequences are classified
de novo clustering at shallow sampling depth and a linear model is used.
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Figure S13: Leave-one-out cross validation for the Shannon diversity analysis.
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Cyanobacteria Alphaproteobacteria
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Figure S14: Leave-one-out cross validation for models of diversity within
phyla (Analyses VI to XI). Panels are for (A) cyanobacteria, (B) verrucomicro-
bia, (C) gammaproteobacteria, (D) alphaproteobacteria, (E) actinobacteria, and (F) bac-
teroidetes.
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Pelagibacter Sphingopyxis

Observed
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Figure S15: Leave-one-out cross validation for models of relative abundance
of select genera (Analyses XII to XV). Panels are for (A) Pelagibacter, (B) Pro-
chorococcus and Synechococcus (grouped together by RDP), (C) Polaribacter, and (D)
Sphingopyzis.
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Figure S16: Model selection for Analysis I1. Sequences are classified using RDP, and
richness is modeled using a linear model (see Table S5). The graphs in (A), (B), (C),
respectively, show the best possible cross validation, BIC, and AIC values for the given
number of predictors. (D) and (E) Performance of the best cross validation model when
used to predict independent data: POMMIER2007 and FUHRMAN2008, respectively.
All training data measures (A, B, and C) point to a six-, seven-, or eight-predictor model.
However, the independent measures indicate that these models are overfit, and that a
three-predictor model is preferable. We therefore implemented the three-predictor model.
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Figure S17: Model selection for Analysis I'V. Sequences are classified using de novo
clustering, and richness is modeled using a linear model, and sequencing depth is shallow
(150 reads; see Table S5). The graphs in (A), (B), (C), respectively, show the best possible
cross validation, BIC, and AIC values for the given number of predictors. (D) and (E)
Performance of the best cross-validation model when used to predict independent data:
POMMIER2007 and FUHRMAN2008, respectively. (F) Rate at which 95% prediction
intervals cover observed values for the GOS data, when the model is fit using RDP-
classified sequences. In all cases, the model was fit using MICROBIS data. All training
data measures (A, B, and C) point to a six- or seven-predictor model. However, the
independent measures indicate that these models are overfit, and that a three-predictor
model is preferable. We therefore implemented the three-predictor model.
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Figure S18: Model selection for mapping Shannon diversity (Analysis V). The
graphs in (A), (B), (C), respectively, show the best possible cross validation, BIC, and AIC
values for the given number of predictors. (D) Performance of the best cross validation
model when used to predict independent data: POMMIER2007. (The model is fit with
MICROBIS data.) All training data measures (A, B, and C) point to a six- or seven-
predictor model. However, the independent measure indicates that these models are
overfit, and that a three-predictor model is preferable. We therefore implemented the
three-predictor model.
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Figure S19: Model selection for mapping richness within cyanobacteria (Analy-
sis VI). The graphsin (A), (B), (C), respectively, show the best possible cross validation,
BIC, and AIC values for the given number of predictors. (D) Performance of the best
cross validation model when used to predict independent data POMMIER2007. (The
model was fit using MICROBIS data.) All training data measures (A, B, and C) point
to a eight-predictor model. However, the independent measures indicate that an eight-
predictor model is overfit, and that a five-predictor model is preferable. We therefore
implemented the five-predictor model.

29



Training Data Independent Data

0.7
06 - A 0.55 - D
0.5 0.50 -

4 -
0 YU 0.45
0.3

0.2 - 0.40

Maximum Cross
Validation R?

0.1 0.35 4
0.0

0123 456 7 8 1 2 3 4 5 6 7 8

Number of Covariates

-700 - B

-750
-800
-850

Minimum BIC

-900
-950 4

-700 C

-750
-800
-850

Minimum AIC

-900
-950

T T T T T T T T

012 3 456 7 8

Number of Covariates

Figure 5S20: Model selection for mapping richness within alphaproteobacteria
(Analysis VII). The graphs in (A), (B), (C), respectively, show the best possible cross
validation, BIC, and AIC values for the given number of predictors. (D) Performance of
the best cross validation model when used to predict independent data POMMIER2007.
(The model was fit using MICROBIS data.) All training data measures (A, B, and C)
point to a six-predictor model. However, the independent measures indicate that a six-
predictor model is overfit, and that a two-predictor model is preferable. We therefore
implemented the two-predictor model.
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Figure S21: Model selection for mapping richness within actinobacteria (Anal-
ysis VIII). The graphs in (A), (B), (C), respectively, show the best possible cross val-
idation, BIC, and AIC values for the given number of predictors. (D) Performance of
the best cross validation model when used to predict independent data POMMIER2007.
(The model was fit using MICROBIS data.) All training data measures (A, B, and C)
point to a seven-predictor model as does the independent data, so we implemented this
model.
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Figure S22: Model selection for mapping richness within gammaproteobacteria
(Analysis IX). The graphs in (A), (B), (C), respectively, show the best possible cross
validation, BIC, and AIC values for the given number of predictors. (D) Performance of
the best cross validation model when used to predict independent data POMMIER2007.
(The model was fit using MICROBIS data.) All training data measures (A, B, and C)
point to a six-predictor model. Although the independent data are uninformative here
(R? < 0.1 for all models), based on the previous analyses, the six-predictor model is
likely overfit. Thus, we implemented the four-predictor model, the largest model such
that adding another predictor increases the cross validation R? less than 2.5% (see Sup-
plementary Methods).
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Figure S23: Model selection for mapping richness within bacteroidetes (Analysis
X). The graphs in (A), (B), (C), respectively, show the best possible cross validation, BIC,
and AIC values for the given number of predictors. (D) Performance of the best cross
validation model when used to predict independent data POMMIER2007. (The model
was fit using MICROBIS data.) All training data measures (A, B, and C) point to a five-
predictor model. However, the independent measures indicate that a five-predictor model
is overfit, and that a three-predictor model is preferable. We therefore implemented the
three-predictor model.
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Figure S24: Model selection for mapping richness within verrucomicrobia
(Analysis XI). The graphs in (A), (B), (C), respectively, show the best possible cross
validation, BIC, and AIC values for the given number of predictors. (D) Performance of
the best cross validation model when used to predict independent data POMMIER2007.
(The model was fit using MICROBIS data.) All training data measures (A, B, and C)
point to a model with eight or more predictors. However, the independent measures
indicate that a this model is overfit, and that a one- or five-predictor model is prefer-
able. Because the five-predictor model had better performance with the training data, we
implemented it.
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Figure S25: Model selection for mapping the relative abundance of Prochloro-
coccus and Synechococus (Analysis XII). The taxa Prochlorococcus and Synechoco-
cus were grouped together by RDP, so we analyzed them in a single analysis. The graphs
in (A), (B), (C), respectively, show the best possible cross validation, BIC, and AIC val-
ues for the given number of predictors. Although a small marginal improvement could
be gained by using a more complex model, we chose a conservative three-predictor model
based on the overfitting observed using the independent data in the other analyses (Sup-
plementary Methods).
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Figure S26: Model selection for mapping the relative abundance of Pelagibacter
(Analysis XIII). The graphs in (A), (B), (C), respectively, show the best possible cross
validation, BIC, and AIC values for the given number of predictors. Although a small
marginal improvement could be gained by using a more complex model, we chose a con-
servative three-predictor model based on the overfitting observed using the independent
data in the other analyses (Supplementary Methods).
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Figure S27: Model selection for mapping the relative abundance of Polaribacter
(Analysis XIV). The graphs in (A), (B), (C), respectively, show the best possible cross
validation, BIC, and AIC values for the given number of predictors. Although a small
marginal improvement could be gained by using a more complex model, we chose a con-
servative three-predictor model based on the overfitting observed using the independent
data in the other analyses (Supplementary Methods).
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Figure S28: Model selection for mapping the relative abundance of Sphingopy-
xts (Analysis XV). The graphs in (A), (B), (C), respectively, show the best possible
cross validation, BIC, and AIC values for the given number of predictors. Although a
small marginal improvement could be gained by using a more complex model, we chose a
conservative two-predictor model based on the overfitting observed using the independent
data in the other analyses (Supplementary Methods).
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Figure S29: Maps of global marine bacterial Shannon diversity. Sequences are
classified using de novo clustering, and diversity is modeled using a linear model (Analysis
V; see Table S5). Shannon diversity is high when all OTUs are equally prevalent, and low
when only a few OTUs dominate the community. (A) In December, Shannon diversity
peaks in temperate latitudes in the Northern Hemisphere. (B) In June, Shannon diversity
peaks in temperate latitudes in the Southern Hemisphere. Predicted Shannon diversity
during the spring and fall is intermediate, with roughly globally uniform richness near the
equinoxes. Predicted Shannon diversity patterns are qualitatively similar to predicted
richness patterns (Fig. 1), and suggest that summertime blooms may contribute to global
diversity patterns when measured by certain parameters.
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Figure S30: Latitudinal gradient in observed data. OTU Richness (log scale) is
plotted versus latitude for MICROBIS samples from each of four seasons. A strong
latitudinal gradient is observed in the winter months, which generally reverses in summer.
These plots do not account for distane from thermocline and other variables which affect
OTU Richness and which were included in our SDM predictions. Their influence accounts
for the fact that we predict a stronger reversed gradient in summer than is apparent in

these plots.
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Figure S31: Sampling bias in marine surveys. The latitude of sampling locations
from MICROBIS and the three validation data sets are plotted against the day length on

MICROBIS: Daylength vs Latitude
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the day of the survey. The range of daylengths at each latitude are shown in grey. (A)

MICROBIS has more samples in the Northern versus Southern hemispheres, but nearly
covers the range of possible latitude and daylength combinations. Specifically, MICROBIS

sampled high latitudes in both winter and summer. (B) In contrast, GOS sampled only
low latitudes, and POMMIER and FUHRMAN did not sample high latitudes in winter.
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Figure S32: Independent model validation. In (A) and (B), a linear model was fit
using MICROBIS sequences classified with a de novo clustering (Analysis I; see Table
S5). This model was then used to predict observations in two independent data sets;
“FUHRMAN2008” and “POMMIER2007” (Fuhrman et al., 2008; Pommier et al., 2007).
In (A), the model fit with MICROBIS had good predictive power, similar to the predictive
power to models fit using FUHRMAN2008 in the original publication (Fuhrman et al.,
2008) (R* = 0.2). In (B) the model fit with MICROBIS has excellent predictive power.
Thus, the model that we used has good predictive power, despite the independent data
sets being collected at different locations at different times, using different methodology
and with different sequencing depths S1. The model had relatively little predictive power
for the Global Ocean Survey data, but (C) 95% prediction intervals covered observed
richness values 96.8% of the time when the model is fit using RDP-classified MICROBIS
sequences at a rarefaction depth of 150 sequences.
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Figure S33: Range maps of representative genera. This is a color version of Figure
2 in the text.
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Figure S34: Patterns of OTU richness within bacterial phyla. Columns show maps
for different phyla; rows for different seasons. Maps are for phyla not shown in Fig. 3;
see caption for a complete description.
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Figure S35: Patterns of OTU richness within bacterial phyla. This is a color
version of Figure 3 in the text.
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Bacterial diversity hotspots and sea surface temperature. (a)

Hotspots of marine bacterial richness overlaid on a map of sea surface temperature (SST)
increases, quantified by comparing weekly SST values between the late 1980s and the early
2000s (Halpern et al., 2008). Hotspots are outlined with black borders, and are defined
as the 10% of ocean surface with the greatest diversity in December and June (primarily
in the Northern and Southern hemispheres, respectively). (b) The distribution of SST
increases across the entire ocean and within December and June diversity hotspots.
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Figure S37: Bacterial diversity hotspots and acidification. (a) Hotspots of ma-
rine bacterial richness overlaid on a map of ocean acidification, measured as the change
in aragonite saturation state (ASS) (Halpern et al., 2008). Hotspots are outlined with
black borders, and are defined as the 10% of ocean surface with the greatest diversity in
December and June (primarily in the Northern and Southern hemispheres, respectively).
(b) The distribution of ASS values across the entire ocean and within December and June

diversity hotspots.
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Figure S38: Bacterial diversity hotspots and ultraviolet radiation. (a) Hotspots
of marine bacterial richness overlaid on a map of ultraviolet (UV) radiation anomalies,
measured as the rate of deviations greater than one standard deviation from the average
Joules per square meter per month (Halpern et al., 2008). Hotspots are outlined with
black borders, and are defined as the 10% of ocean surface with the greatest diversity in
December and June (primarily in the Northern and Southern hemispheres, respectively).
(b) The distribution of UV anomaly values across the entire ocean and within December
and June diversity hotspots.
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