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Methods Summary

Constructing and implementing an SDM model requires local 

measurements of community composition and rasters of 

environmental data.  For measurements of community composition, we 

assembled a database of rDNA data from 377 marine samples from 

164 distinct locations with depth <150 m (Supplementary Figure S1). 

From this database, we excluded samples from vents, anoxic water, 

sediment, and fresh water. Data came from four sources 

(Supplementary Table S1); we used MICROBIS for our primary analysis 

and the other sources for model selection and validation. Three data 

sources contributed 16S sequences, and reference [3] contributed 

ARISA data (Supplementary Table S1).  OTUs for the ARISA data were 

obtained from reference [3].   For the non-ARISA data, we considered 

OTUs defined by reference-based classification and de novo clustering.

For the rasters of environmental data, from 45 environmental variables 

mapped at a 0.5° latitude/longitude resolution across the world ocean, 

we selected 21 (starred in Supplementary Table S2) that correlated 

with diversity, were not highly correlated with each other 

(Supplementary Table S3), and had multivariate environmental 

similarity surface scores (MESS; [16]) greater than -20 for 99.5% of the 

world ocean (Table S4). Incorporation of MESS scores ensured that 

models could be projected into geographic space with minimal 

extrapolation [16].  Many of the rasters were depth- and 

month-specific, although these were often less predictive than their 

averaged counterparts.



To construct SDMs, we fit models using the MICROBIS data, and 

performed extensive variable selection and validation analyses using 

all four data sets.  We constructed SDMs with linear or non-linear 

models, rarefaction depths of 4266 or 150 rDNA sequences per sample 

(with more than 4266 sequences, many samples would have to be 

excluded), and sequences classified using de novo clustering or 

reference-based classification.  Regardless of the methodology, the 

resulting maps showed temperate diversity peaks in the winter (Figure 

1 and Supplementary Figures S2-S5).  Thus, we focus on a linear model 

at a rarefaction depth of 4266 sequences, with de novo sequence 

clustering.  To estimate ranges of individual taxa, we used SDMs with a 

logistic regression model [17].

Supplementary Methods

Reference database-based sequence clustering

The methods used for reference-based sequence classification of the 

reference [2] and [3] data are described in the respective publications.  

We used the diversity measurements that resulted from the application 

of these procedures in these studies for our analyses.   For the Global 

Ocean Survey (GOS) and MICROBIS data, to classify 16S sequences 

into taxonomic groups (e.g., genera), we first downloaded the 13,550 

Global Ocean Survey 16S sequences from CAMERA 

(http://camera.calit2.net) and the 7,466,321 MICROBIS 16S sequences 

from the MICROBIS website (http://icomm.mbl.edu/microbis). We then 

annotated each 16S sequence using the command-line version of the 

Ribosomal Database Project’s 16S sequence classifier (RDP Classifier 

v2.3, http://sourceforge.net/projects/rdp-classifier; [19]), which is a 

naïve Bayesian classifier that is trained on the high-quality 16S 

database curated by the Ribosomal Database Project 

(http://rdp.cme.msu.edu). It evaluates each sequence independently, 

assigns a taxonomy string from domain to genus to each sequence, 

http://rdp.cme.msu.edu/
http://icomm.mbl.edu/microbis/
http://camera.calit2.net/


and provides a confidence estimate of the classification at each 

taxonomic level in the form of a bootstrap statistic. The output file was 

parsed using in-house Java scripts that extract a taxonomic annotation 

for each sequence. We used all taxonomic annotations regardless of 

their bootstrap values: introducing a bootstrap threshold (e.g., 50%) 

introduces significant bias to the data set because sequences with high 

similarity to known bacterial genera are not evenly distributed across 

latitudes.  After rarefaction, the relative abundance of each taxonomic 

group was calculated by dividing the number of sequences assigned to 

the group by the total number of rarefied sequences.

De novo   sequence clustering  

We analyzed de novo clustered OTUs that were generated in previous 

studies that used the same data.   MICROBIS sequences were clustered 

following the methods described in reference [18] and clustering 

annotations were downloaded from The Visualization and Analysis of 

Microbial Population Structures website (http://vamps.mbl.edu).   The 

methods used for clustering the reference [2] sequences are described 

in reference [2], and we used the diversity measurements that resulted 

from the clustering that was done therein.  De novo clustering these 

sequences is not practical because they were generated using shotgun 

sequencing.  Likewise, de novo clustering is impractical for the 

reference [3] ARISA data.
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