SUPPLEMENTARY ONLINE DATA Evolutionarily conserved structural changes in phosphatidylinositol 5-phosphate 4-kinase (PI5P4K) isoforms are responsible for differences in enzyme activity and localization

Jonathan H. CLARKE¹ and Robin F. IRVINE

Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, U.K.

Figure S1 Saturation curves for PI5P4K enzyme activity assays at different ATP substrate concentrations

Experiments were conducted with a minimum of triplicate samples. Mutant PI5P4K β and PI5P4K γ enzymes refer to constructs mutagenized to increase the intrinsic activity of the isoform (see the Experimental section and Figure 2 of the main text). Results are means \pm S.E.M.

¹ To whom correspondence should be addressed (email jhc30@cam.ac.uk).

© 2013 The Author(s)

Figure S2 Models of PI5P4K β indicating key structural amino acids

Ribbon (**A** and **B**) and space-filling (**C** and **D**) models of PI5P4Kβ with amino acid residues suggested to be important in ATP binding (red), PtdIns5P binding (yellow) and membrane interaction (cyan). Side views (**A** and **C**) and membrane-binding views (**B** and **D**) are shown. Data were extracted from [1]. Models were compiled using the UCSF Chimera package.

© 2013 The Author(s)

Figure S3 Predicted full structures of PI5P4Ks

(A and B) Amino-acid sequence and X-ray crystallography structures of all three isoforms were used to model the unordered regions and suggest possible conformations. The structures are presented as homodimers with one monomer coloured (PIP4K α , red; PIP4K β , cyan; and PIP4K γ , purple) and dimers are positioned to view the side elevation (A) and the flat surface that would be in contact with a membrane (B). (C and D) Dimerization interfaces for PI5P4K homo- and hetero-dimers. Fragments shown represent the β 1 sheet interface (molecular view) attached to the β 2 sheet region (ribbon view), with predicted hydrogen bonding shown in yellow. Bonding across the homodimer interfaces is predicted from the published structures (C) and predictions of heterodimerization interfaces were generated by superimposing the structure for the first 120 amino acids of an isoform on to one chain of the homodimer crystal structure of the pairing isoform and identifying the comparative hydrogen bond lengths using the FindHBond function of Chimera (D).

© 2013 The Author(s)

Figure S4 Evolutionary divergence of species with annotated PI4P5K/PI5P4K superfamily genes, relative to mammalian evolution

Groups denote taxa with only PI4P5K activity (light shading) and taxa with at least one PI5P4K activity (dark shading), as defined by gene sequence homology. The presence of genes in other lower metazoa (not annotated) has not been included (see Table S4). Timescale represents millions of years (since present). Values for estimated divergence of taxa expressing PI5P4K activity were estimated using TimeTree [2].

Table S1 Example turnover numbers from the BRENDA enzyme database

The examples show the maximum and minimum range of all known enzymes and also specifically of kinases. The $k_{\rm cat}$ values reported are for wild-type human enzymes utilizing natural substrates.

Enzyme	k_{cat} (s ⁻¹)
Histone-arginine N-methyltransferase	2.0 × 10 ⁻⁶
Neutrophil collagenase	2.3×10^{-4}
Calpain-1	2.0×10^{-2}
Alcohol dehydrogenase	2.5
Deoxyribonuclease I	703
Cholinesterase	1433
Carbonic anhydratase II	1.4×10^{6}
Ethanolamine kinase	1.6×10^{-4}
Polo kinase	9.4×10^{-3}
Thiamine diphosphokinase	6.9×10^{-2}
Mitogen-activated protein kinase	0.9
Diacylglycerol kinase	1.7
Ins(1,3,4)P ₃ 5/6-kinase	20
Diphosphoinositol-pentakisphosphate kinase	38
Choline kinase	71.5
Creatine kinase	143
Adenylate kinase	842
Phosphoglycerate kinase	2633

Table S2 Regions of amino acids relating to structural variations in aligned models

Region 1 is synonymous with the putative G-loop sequence, region 2 with the variable insert sequence and region 3 with the activation loop, as designated in the PI5P4K β structure [1].

Region	ΡΙ5Ρ4Κα	PI5P4Kβ	PI5P4K _Y
Region 1	125–133	130–138	133–140
Region 2	284–332	289–342	291–347
Region 3	363–387	372–397	378–402

Table S3 Evidence for PI5P4K activity in metazoan genomes

A BLAST search of the EnsemblMetazoa genomes using the dPIP4K peptide sequence from *D. melanogaster* (bold) matched regions of genomes from other species, suggesting that at least one similar sequence is present. Using *D. melanogaster* as a search control, the best percentage identity scores are reported over the largest alignment length. Species below the parasitoid wasp have ambiguity over the presence of a potential PISP4K activity. The presence of regions of translated protein identity does not confirm the presence of a functional activity in these species. BLAST searches of the EnsemblPlants, EnsemblProtist and EnsemblBacteria genome databases did not produce any matches greater than 35%, 40%, 34% or 29% identity respectively.

Longth of

Common name Latin name		Identity (%)	alignment
Fruitfly	Drosophila melanogaster	100	404
Red flour beetle	Tribolium castaneum	72	415
Human louse	Pediculus humanus	73	394
Waterflea	Daphnia pulex	65	331
European honeybee	Apis mellifera	65	307
Nematode	Trichinella spiralis	50	321
Monarch butterfly	Danaus plexippus	68	298
Silkmoth	Bombyx mori	62	299
Pea aphid	Acyrthosiphon pisum	60	423
Trichoplax	Trichoplax adhaerens	47	404
Trematode	Schistosoma mansoni	49	402
Nematode	Caenorhabditis elegans	53	411
Deer tick	lxodes scapularis	58	372
Starlet sea anenome	Nematostella vectensis	57	319
Purple sea urchin	Strongylocentrotus purpuratus	46	337
Leafcutter ant	Atta cephalotes	58	247
Nematode	Pristionchus pacificus	61	104
Parasitoid wasp	Nasonia vitripennis	96	33
Southern house mosquito	Culex quinquefasciatus	31	279
Yellow fever mosquito	Aedes aegypti	31	279
Sponge	Amphimedon queenslandica	40	205
Mosquito	Anopheles gambiae	28	214
Postman butterfly	Heliconius melpomene	36	197

© 2013 The Author(s)

Figure S5 Molecular evolution of PI5P4K isoforms

Cladograms were created from phylograms (generated using the EnsemblCompara GeneTrees resource) to depict evolutionary divergence of PI5P4Ks in sequenced genomes. Numbers in parentheses represent percentage identity between orthologues. Scores were calculated from ClustalW pairwise alignments (using the BLOSUM sequence identity matrix) over regions of (partial) sequence available [3]. Coloured groups indicate related taxa (red, primates; brown, cetaceans and ungulates; purple, carnivores; cyan, rodents; green, marsupials; yellow, reptiles and birds; blue, fish).

© 2013 The Author(s)

Table S4 Annotated PI5P4K genes in vertebrate genomes

The search was limited to complete sequenced genomes available on the Ensembl (EMBL-EBI) database using gene name and orthologue searches. The available genomes were current as of 1 January 2013.

PIP4K2A gene(s)	PIP4K2B gene(s)	PIP4K2C gene(s)	Common name	Latin name	Class, order
2	0	2	Zebrafish	Danio rerio	Actinopterygii, Cypriniformes
1	1	2	Platyfish	Xiphophorus maculatus	Actinopterygii, Cyprinodontiformes
1	1	2	Medaka (Japanese killifish)	Oryzias latipes	Actinopterygii, Beloniformes
1	1	2	Stickleback	Gasterosteus aculeatus	Actinopterygii, Gasterosteiformes
2	1	2	Pufferfish	Takifugu rubripes	Actinopterygii, Tetraodontiformes
2	1	3	Green-spotted pufferfish	Tetraodon nigroviridis	Actinoptervaji. Tetraodontiformes
1	1	2	Tilapia	Oreochromis niloticus	Actinoptervaii, Perciformes
1	1	2	Cod	Gadus morhua	Actinoptervoji, Gadiformes
1	1	1	Coelacanth	Latimeria chalumnae	Sarcoptervoii, Coelacanthiformes
1	1	1	Western clawed frog	Xenopus tropicalis	Amphibia, Anura
1	1	1	Chinese softshell turtle	Pelodiscus sinensis	Sauropsida. Testudines
1	1	1	Anole lizard	Anolis carolinensis	Reptilia, Squamata
1	1	0	Turkey	Meleagris gallopavo	Aves Galliformes
1	1	0	Chicken	Gallus gallus	Aves Galliformes
1	1	0	Zehra finch	Taenionygia guttata	Aves Passeriformes
1	1	1	Platynus	Arnithorhynchus anatinus	Mammalia Monotremata
1	0	1	Tasmanian devil	Sarconhilus harrisii	Mammalia, Marsunialia
1	1	1	Wallahy	Macronus eugenii	Mammalia, Marsupialia
1	1	1	Onossum	Monodelphis domestica	Mammalia, Nidisuplana Mammalia, Didelphimorphia
1	0	1	Sloth	Choloenus hoffmanni	Mammalia Pilosa
1	1	0	Armadillo	Dasynus novemeinetus	Mammalia, Cinculata
1	1	1	Lesser hedgehog tenrec	Echinons telfairi	Mammalia Afrosoricida
1	1	1	Huray	Procavia capansis	Mammalia, Arrosoficida Mammalia, Hyracoidea
1	1	1	Flenbant	Lovodonta africana	Mammalia, Prohoscidea
1	1	1	Shrow	Sorey araneus	Mammalia, Frobosciuca Mammalia, Soricomorpha
1	1	1	Hedgebog	Fringcous ourongous	Mammalia, Erinaceomorpha
1	1	1	Mogabat	Ptoropus vampyrus	Mammalia, Chiroptora
1	1	1	Microbat	Muotio luoifuguo	Mammalia, Chiroptera
1	1	1	Forrot	Myotis lucilugus	Mammalia, Carnivora
1	1	1	Perret	Musiela pulorius iuro	Mammalia, Carnivora
1	1	1	Duy	Carris Tarrinaris	Mammalia, Carnivora
1		1	Pallua		Mammalia, Carrivora
1		1	Ual		Mammalia, Callivola
1		1	Horse	Equus caballus	Mammalia, Perissodaciyia
1			Pig	Sus scrota	Mammalia, Artiodactyla
			Cow	Bos taurus	Mammalia, Artiodactyla
1	1	0	Alpaca	Vicugna pacos	Mammalia, Artiodactyla
1	1	1	Dolphin	Iursiops truncatus	Mammalia, Cetacea
1	1	1	Pika	Uchotona princeps	Mammalia, Lagomorpha
1	1	1	Rabbit	Uryctolagus cuniculus	Mammalia, Lagomorpha
1	1	1	Ground squirrel	Ictidomys tridecemlineatus	Mammalia, Rodentia
1	1	1	Guinea pig	Cavia porcellus	Mammalia, Rodentia
1	1	1	Kangaroo rat	Dipodomys ordii	Mammalia, Rodentia
1	1	1	Rat	Rattus norvegicus	Mammalia, Rodentia
1	1	1	Mouse	Mus musculus	Mammalia, Rodentia
1	1	1	Tree shrew	Tupaia belangeri	Mammalia, Scandentia
1	1	1	Bushbaby	Otolemur garnettii	Mammalia, Primates
1	1	1	Mouse lemur	Microcebus murinus	Mammalia, Primates
1	1	0	Tarsier	Tarsius syrichta	Mammalia, Primates
1	1	1	Marmoset	Callithrix jacchus	Mammalia, Primates
1	1	1	Macaque	Macaca mulatta	Mammalia, Primates
1	1	1	Gibbon	Nomascus leucogenys	Mammalia, Primates
1	1	1	Orangutan	Pongo abelii	Mammalia, Primates
1	1	1	Gorilla	Gorilla gorilla	Mammalia, Primates
1	1	1	Chimpanzee	Pan troglodytes	Mammalia, Primates
1	1	1	Human	Homo sapiens	Mammalia, Primates
					,

© 2013 The Author(s)

PI5P4Kα (281-305)	HDVERAEQEEVECEENDGEEEGESD
Prediction: GOR V	ССННННННННННССССССССССССССССССССССССССС
Prediction: PSIPRED	СНННННННННННННСССССССССС
[confidence]	9566765544212104664225579
PI5P4Kβ (286-310)	HDVDRAEQEEMEVEERAEDEECEND
Prediction: GOR V	ССССНННННННННННННННННКСС
Prediction: PSIPRED	СНННННННННННННННННННН
[confidence]	9036899899999887666766509
PI5P4Kγ (288-312)	HDIIRGSEPEEEAPVREDESEVDGD
Prediction: GOR V	000000000000000000000000000000000000000
Prediction: PSIPRED	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
[confidence]	9643589866458863356422489

Figure S6 Prediction of secondary structure for the NLS regions of PI5P4K isoforms

Amino acid numbers are given in parentheses. Secondary structure prediction was performed by two separate methods, GOR V and PSIPRED v3.2 [4,5] with reported prediction accuracies (Q₃) of 73.5% and 81.6% respectively. Prediction lettering follows the Dictionary of Protein Secondary Structure (DSSP) format; H, 4-turn helix (α -helix); C, coil. Confidence is an arbitrary value 0–9 for the PSIPRED prediction.

REFERENCES

- Rao, V. D., Misra, S., Boronenkov, I. V., Anderson, R. A. and Hurley, J. H. (1998) Structure of type IIβ phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell **94**, 829–839
- 2 Hedges, S. B., Dudley, J. and Kumar, S. (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972
- 3 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R. et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948
- 4 Buchan, D. W., Ward, S. M., Lobley, A. E., Nugent, T. C., Bryson, K. and Jones, D. T. (2010) Protein annotation and modelling servers at University College London. Nucleic Acids Res. 38, W563–W568
- 5 Jones, D. T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202

Received 8 April 2013/7 June 2013; accepted 12 June 2013 Published as BJ Immediate Publication 12 June 2013, doi:10.1042/BJ20130488

© 2013 The Author(s)